
CS 710: Complexity Theory Date: Feb. 27th, 2020

Lecture 12: Chee Yap Theorem, Mahaney’s theorem, and Tail bound

Instructor: Jin-Yi Cai Scribe: Jialu Bao

The document has not been scrutinized as peer-reviewed works would have. The scribe is
responsible for any errors within it.

1 Sparse Set

We first discussed sparse set, which gives an equivalent construction of P/Poly.

Definition 1. Sparse set S is a set of strings such that there exists a polynomial p(n), the number
of strings of length n in S is bounded by p(n) for all n ∈ N. Let S=n = {x ∈ S | |x| = n} ⊆ Σn,
then being sparse means that |S=n| is bounded by a polynomial p on n.

Then we made the following claim,

Claim 1. The condition SAT ∈ P/Poly in Karp-Lipton Theorem is equivalent to say that there
exists a sparse set S such that SAT = L(MS) where M is a deterministic polynomial time Turing
machine.

Proof. If SAT ∈ P/Poly, then there exists polynomial sized advice y(n), and a deterministic poly-
nomial time Turing Machine M such that M accepts (x, y(|x|)) if and only if x ∈ SAT . Then we
can design the following set S,

S = {1n#p | p is the prefix of y(n)}

Given n, we can query the oracle S if 1n#0 in S, if so, continue querying 1n#00, and otherwise
query 1n#01... By |y(n)| such queries to the oracle, we can recover y(n) and use it as the advice,
and as the size y(n) is bounded by polynomial, a deterministic polynomial time machine suffices.
S is sparse because for every string size m, there is at most one string in S with the prefix 1n# for
any n < m− 1, so the total number of size m string in S is less than m.

In the other direction, there exists a sparse set S such that SAT = L(MS) and |S=n| ≤ p(n) ,
we want to design some advice y(n) such that M accepts (x, y(|x|)) if and only if x ∈ SAT . Given
input x, any input M can make to ask for its membership in S is of size polynomial of |x| – say
it’s bounded by q(n). Since |S=n| ≤ p(n) implies that |S≤n| ≤ n × p(n), the number of strings of
size at most q(n) that is in S is at most n× p(q(n)), which is also polynomial time to n. Thus, we
can list all such strings with polynomial number of n bits. This list y′(n) can be used as the advice
– when trying to decide x, whenever needed to query the oracle for the membership of some s, if
suffices to scan y′(|x|) to see if s is listed in y′(|x|). By doing that, it accepts (x, y′(n)) if and only
if x ∈ L(MS).

With the same technique, we can show that SAT ∈ co-NP if and only if there exists a polyno-
mial time non-deterministic Turing machine N0 such that SAT = L(NS

0).

1

2 Chee Yap Theorem

Chee Yap used similar techniques used in Karp-Lipton theorem and proved the following

Theorem 1. If NP ⊆ co-NP/Poly, then ΣP
3 = ΠP

3 , and consequently, the whole polynomial
hierarchy collapsed to the third level.

Proof. NP ⊆ co-NP/Poly is equivalent to SAT ∈ co-NP/Poly, which is also equivalent to there
exists a polynomial time non-deterministic Turing machine N0 and a sparse set oracle S such that
SAT = L(NS

0).In first-order logic language, we have

∃N0 ∈ NTM, sparse set S

∀PΨ
((
∃Pσ1Ψ |σ1= 1 ∧ ∀P (path p) N0(Ψ, p, S≤p

∗(|Ψ|)) rejects
)

∨
(
∀Pσ2Ψ |σ2= 0 ∧ ∃P (path q) N0(Ψ, q, S≤p

∗(|Ψ|)) accepts
))

where p∗(n) is a generic notation for polynomials and bounds the size of query that N0 makes to
S. We can move all quantifiers ahead and transform the formula to the following Prenex normal
form,

∃N0 ∈ NTM, sparse set S

∀PΨ ∀Ppath p ∀Pσ2 ∃Pσ1∃Ppath q
((

Ψ |σ1= 1 ∧N0(Ψ, p, S≤p
∗(|Ψ|)) rejects

)
∨
(
Ψ |σ2= 0 ∧N0(Ψ, q, S≤p

∗(|Ψ|)) accepts
))

Collapsing ∀′s and ∃′, we can transform our assumption to the following formula,

∃N0 ∈ NTM, sparse set S

∀PΨ, path p, σ2 ∃Pσ1, path q
((

Ψ |σ1= 1 ∧N0(Ψ, p, S≤p
∗(|Ψ|)) rejects

)
∨
(
Ψ |σ2= 0 ∧N0(Ψ, q, S≤p

∗(|Ψ|)) accepts
))

(1)

where quantification p, q, σ2, σ1 can be freely reordered. Then we can use eq. (1) to show that
ΠP

3 ⊆ ΣP
3 .

Any problem T in ΠP
3 can be formulated as

T = {w | ∀Px ∃P y ∀P z D(w, x, y, z,)}

where D is a polynomial time decidable problem by a deterministic Turing machine. By Cook
reduction, given any w, x, y, we can find a formula Ψ′w,x,y that is unsatisfiable if and only if

∀P z D(w, x, y, z). Thus, there exists N0 ∈ NTM , sparse set S such that for any w, x, y, there
exists path in NS

0 accepts Ψw,x,y if and only if the formula Ψw,x,y is unsatisfiable, or equivalently,
∀P z D(w, x, y, z). Thus, by eq. (1), T can be rewriten as

T = {w | ∃N0 ∈ NTM, ∃P sparse set S,

∀PΨ, path p, σ2, ∃Pσ1, path q
((

Ψ |σ1= 1 ∧N0(Ψ, p, S≤p
∗(|Ψ|)) rejects

)
∨
(
Ψ |σ2= 0 ∧N0(Ψ, q, S≤p

∗(|Ψ|)) accepts
))

∧
(
∀Px ∃P y, path r, NS

0 (Ψw,x,y, r, S
≤p∗(|Ψw,x,y |)) accepts

)
}

2

This simplifies to,

T = {w | ∃N0 ∈ NTM, ∃P sparse set S,

∀Px,∃P y,path q ∀Pσ2,
(
Ψw,x,y |σ2=0 ∧N0(Ψw,x,y, , q, S

≤p∗(|Ψ|)) accepts
)

Instead of checking whether Ψσ2=0 for all σ2, we can make a curcuit that generates a certificate
every time N0 accepts using self-reducibility and verify the circuit using the certificate. Thus,

T = {w | ∃PC,∃P sparse set S,

∀Px,∃P y,path q
(
Ψw,x,y |σ2=0 ∧N0(Ψw,x,y, , q, S

≤p∗(|Ψ|)) accepts
)

⊆ ΣP
3

ΣP
3 is the complement of ΠP

3 , so ΠP
3 ⊆ ΣP

3 implies ΠP
3 = ΣP

3 .

3 Generalization

In the polynomial hierarchy,

Definition 2.

ΘP
i := ΣP

i ∩ΠP
i

∆P
k := PΣPk−1

Equivalently, ∆P
k = PΠPk−1 as the polynomial Turing machine can always flip the input to and

the answer given by the oracle. Furthermore, by this definition, for all i,

∆P
i = PΣPk−1 ⊆ NPΣPk−1

= NPNP
...NP︸ ︷︷ ︸

k

= ΣP
k ∆P

i = PΠPk−1 ⊆ co-NPΠPk−1 = ΠP
k

So ∆P
k ⊆ ΘP

k .

Recall that Karp-Lipton theorem is saying that, if ΣP
1 ⊂ ∆P,S

1 for some sparse set S, then the
polynomial hierarchy collapsed to ΣP

2 = ΠP
2 . So a natural generalization is what ΣP

k ⊂ ∆P
k implies

for other k ∈ N?
Similarly, the generalized version of Chee Yap theorem asks what is the implication if ΣP

k ⊂ ΠP,S
k

for some sparse set oracle S.
Some results in computational complexity could be surprising, for example, if NP ∩co-NP 6= P ,

then there are problems that can be decided in polynomial time but we can’t extract a certificate
of in polynomial time. In other word, self-reducibility breaks down.

4 Steve Maheney’s theorem

As illustrated in claim 1, NP ⊆ P/Poly is equivalent to saying every NP problem can be reduced to
some sparse set problem under Cook reduction, which is also equivalent to there exists a sparse set S
that is NP-complete under Cook reduction. While Karp-Lipton theorem answeres the implications

3

of that condition, Maheney asks what’s the implications that there exists a sparse set S that is NP-
complete under Karp reduction. Unlike Cook reduction that may call O multiple times in reduction
to problem O, Karp recuction makes only one call to O and use the answer from O directly as the
answer for the original problem. Formally,

Definition 3 (Karp reduction). Karp reduction from decision problem A to B is a polynomial-time
function f : alphabet(A)→ alphabet(B) such that x is accepted in problem A if and only if f(x) is
accepted in B. It is sometimes denoted as A ≤Pm B or A ≤p B.

Mahaney shows the following

Theorem 2. There exists sparse set S that is NP-complete under Karp-reduction if and only if
NP = P .

Below we present a simplified proof credit to Ogihara-Watanabe.

Proof. (⇐:) If NP = P , then there exists polynomial time algorithm f for all NP-complete
problems. Thus, a trivial sparse set {1} suffices.

(⇒:) Assuming there exists sparse set S that is NP-complete under Karp-reduction, we want
to show NP = P .

Define total order ≺ such that for τ, σ ∈ {0, 1}∗, τ ≺ σ when either σ is a prefix of τ , or there
exists i ≥ 1 such that for all 1 ≤ j < i σj = τj and σi = 0, τi = 1.

Define the decision problem

LSAT : {〈Ψ, σ〉 | there exists full assignment τ ≺ σ such that τ is a satisfying assignment of Ψ }

Note that LSAT is an NP-complete problem, because for any given Ψ, whether Ψ in SAT could be
reduced to whether (Ψ, ε) is in LSAT , and a satisfying full assignment can provide a polynomial
time certificate.

By assumption, there exists a sparse set S and a polynomial-time function f , such that 〈Ψ, σ〉 ∈
LSAT if and only if f(〈Ψ, σ〉) ∈ S. Since f is polynomial time algorithm, the size of f(x) is also
bounded by polynomial of |x| for any input x. Say |f(x)| ≤ p(|x|). By sparseness of S, there exists
polynomial q(n) such that |S≤n| ≤ q(n). Given formula Ψ with k variables, let N = q(p(|Ψ|+ k)),
then N upper bounds the number of element in S with size at most p(|Ψ| + k), and thus upper
bounds the number of element in S such that there exists partial assignments σ with f(Ψ, σ) ∈ S.

Now we can devise a polynomial time algorithm that solves SAT by exploring partial assignments
of a formula ordered in a tree and pruning the tree at each level. Let each node in the tree
corresponds to a partial assignment. At the root of the tree sits the empty assignment ε, and at
leaves sit full assignments. Each node v that is not leaf have two children, v0 and v1, which extends
v with assignments to the next unassigned variable.

We explore partial assignments given by nodes on the tree level by level. At each level h , we
evaluate f(vi) for each vi in that level,

• If the number of nodes in that level, 2h, does not exceed N , then we go to the next level
without pruning.

• Otherwise, we prune in the following ways,

– If f(vi) = f(vj) for vi ≺ vj , then prune vj and its descendent. Repeat until there’s no
more duplicates.

4

– If after deduplication, there are still more than N distinct f(vi)’s, then prune the left-
most, i.e. , smallest w.r.t. order ≺ and and its descedents. Repeat until there’s no more
than N branches remained.

We claim that this pruning procedure maintain the following invariant: if there exists satisfying
assignments, the smallest (w.r.t. order ≺) satisfying assignment’s ancestor at every level is not
pruned. This invariant is maintained because

• When we pruned vj because f(vi) = f(vj) for some i ≺ j, if vj has satisfying descendents,
then f(vj) ∈ S, and thus f(vi) ∈ S, indicating vi also has satisfying descendents, which would
be smaller than any of vj ’s descendents.

• When we pruned vi at level h because at least N nodes at level h bigger than vi are mapped
to distinct values in S, if vi is the ancestor of the smallest satisfying assignments, then
〈Ψ, vi〉 ∈ LSAT and f(vi) ∈ S. As the unpruned nodes vj all satisfies vi ≺ vj , by definition
of LSAT , 〈Ψ, vi〉 ∈ LSAT implies that 〈Ψ, vj〉 ∈ LSAT and f(vj) ∈ LSAT . At least N such
vj with distinct f(vj) then implies that there exists more than N elements in S with size at
most p(|ψ|+ k), contracting to the assumption that S is sparse.

Thus, the left most/smallest vi must not be the ancestor of the smallest satisfying assignments,
and is safe to pruned.

With this invariant maintained, the smallest satisfying assignment will not get pruned throughout
the process. Thus, when reaching the leaf level, there exists any unpruned full assignments satisfying
Ψ if and only if there exists any full assignments satisfying Ψ.So this algorithm gives correct answer.

Also, its runtime is polynomial. At each level, it calculates f(v) for at most 2N vertices v,
and prunes at most N times – there are at most N unpruned vertices at the last level and thus at
most 2N vertices at this level are remained to get scrutinized. Each run of f is polynomial time,
and pruning any one vertex is at most N log(N) time, with N polynomial to the size of Ψ, so the
computations at each level are in polynomial time. There are k < |Ψ| levels in total, so the total
time is also polynomial to the input size.

5 Useful inequalities in probability

In preparation of learning probabilistic complexity class, we learned about inequalities frequently
used in reasoning about probability.

The bound gets tighter when the random variable is the sum of a bunch of independent random
variables. Consider a coin flip with probability 1

2 to get a head +1, and probability 1
2 to get a

tail −1. Tossing the coin n times, and let Xi records outcome in toss i. Let Sn = X1 + ... + Xn.
The expectation follows from the linearity of expectation: E[Sn] =

∑n
i=1E[Xi] = 0. To study how

concentrated X is around 0, we may use the knowledge that Sn
n is a bionomial distrbution and

converges towards normal distribution N (0, 1) as n converges to infinity. Then,

lim
n→∞

Pr
[Sn√

n
∈ (a, b)

]
=

∫ b

a

1√
2π
e−

1
2
x2

However, the limit n → ∞ here is not satisfying when we want to know how concentrate is X for
small n. Thus, tail probability estimate such as Markov Inequallity.

5

Theorem 3 (Markov Inequality). Given non-negative random variable x whose expected value is
finite,

Pr[x ≥ a] ≤ E[x]

a

for all a > 0.

The proof is straightforward,

Proof. By definition,

E[x] =

∫
R
x · Pr[x]dx

≥
∫
a
x · Pr[x]dx because x ≥ 0

≥ a ·
∫
a
Pr[x]dx because a > 0

= a · Pr[x ≥ a]

Thus, Pr[x ≥ a] ≤ E[x]
a .

However, Markov inequality requires the random variable to be non-negative and thus do not
apply to our motivating example. Furthermore, Markov inequality does not use the condition that
Sn is the sum of independent variables. With that assumption, we can achieve a sharper bound.

Claim 2 (Chernoff Bound). In the motivating example

Pr[Sn ≥ ∆] ≤ e−
∆2

2n

Proof. Whether Sn is non-negative or not, eλSn is non-negative, and thus, by Markov inequality,

Pr[Sn ≥ ∆] = Pr
[
eλSn ≥ eλ∆

]
≤ E[eλSn]

eλ∆

As Sn = X1 + ...+Xn,

E[eλSn] = E[eλX1+...+λXn]

= E[eλX1 ...eλXn]

As Xi’s are independent, eλXi are also independent, and thus,

E[eλX1 ...eλXn] = E[eλX1] · E[eλX2] · ... · E[eλXn]

Recall that each Xi is a random variable with half probability to take value 1 and half probability
to take value −1. Thus, for each i, E[eλXi] = 1

2e
λ + 1

2e
−λ. Applying Taylor Expansion for ex, we

have

eλ = 1 + λ+
1

2!
λ2 +

1

3!
λ3 + ...

e−λ = 1− λ+
1

2!
λ2 − 1

3!
λ3 + ...

6

Thus,

E[eλXi] =
1

2
eλ +

1

2
e−λ

= 1 +
1

2!
λ2 +

1

4!
λ4 + ...

= e
λ2

2

Thus,

Pr[Sn ≥ ∆] ≤ E[eλSn]

eλ∆

=
e
λ2·n

2

eλ∆

= e
λ2·n

2
−λ∆

Fixed n,∆, λ2·n
2 − λ∆ is minimized when λ = ∆

n , and λ2·n
2 − λ∆ evaluates to −∆2

2n . Thus,

Pr[Sn ≥ ∆] ≤ e
∆2

2n

See wikipedia([4]) for more general forms of Chernoff bound in both additive form and multi-
plicative form.

5.1 Application: Ramsey’s theorem

Ramsey’s theorem states that for any k, l ≥ 1, if n is large enough, then for any complete graph G
with more than n nodes colored with red or blue, either there exists a blue clique with k nodes or
there exists red clique of size l. Let R(k, l) be the smallest such n that is large enough.

Paul Erdos showed that
R(k, l) ≤ R(k − 1, l) +R(k, l − 1)

And thus, R(k, l) ≤
(
k+l−1
l−1

)
.

Exercise left to readers to apply the tail bound: Color n nodes randomly with red, or blue,
what is the possibility that the coloring is not (k, l) Ramsey, i.e., there’s no blueclique of size k or
red clique of size l?

References

[1] http://www.wisdom.weizmann.ac.il/ oded/CC/mahaney.pdf

[2] http://www.cs.umd.edu/ jkatz/complexity/f05/lecture6.pdf

[3] http://www.cs.cmu.edu/ odonnell/toolkit13/lecture03.pdf

[4] https://en.wikipedia.org/wiki/Chernoff bound

7

[5] J.E. Hopcroft. Recent directions in algorithmic research. In Theoretical Computer Science
123-134, 1981, Springer

[6] Chee K, Yap. Some consequences of non-uniform conditions on uniform classes Theoretical
computer science 287-300, 1983, Elsevier

8

