
CS880: Approximation and Online Algorithms Scribe: Jialu Bao

Lecture 6: LP relaxation and rounding Date: Sept.27, 2019

6.1 Finishing the proof of Rent–or–Buy Problem

6.1.1 Multi-commodity Rent-or-Buy problem

Last time we talked the Rent-or-Buy problem, where we are given a graph and a set of demands
from the source to terminal nodes. We want to satisfy the demands by connecting terminals to
the source (think about sending flows), and we need to either “buy” or “rent” edges used in these
paths. Every edge has an associated cost ce: when renting the edge, we need to pay ce more for
using the edge on paths connecting each new source–terminal pair; when buying the edge, we pay
M · ce for using the edge on whichever number of source–terminal pairs. The constant M is the
same for all edges. If we have decided on paths for connecting all source–terminal pairs, then the
number of paths using each edge is fixed, and we would rent or buy by choosing the lower price.
However, there could be many ways to wire the paths between source-terminal pairs, so we want
to find out the cheapest wiring and buy or rent accordingly.

Formally, given graph G = (V,E), cost ce on each edge e, source s, and a set of terminals T , we
want to find paths Pt from s to t ∈ T that minimize∑

e∈∪tPt

min(M · ce, |{t : e ∈ Pt}| · ce)

Rent–or–Buy problem is a special case of Buy–at–Bulk network design, where the cost of using a
edge could be an arbitrary concave function with respect to its load. In Rent–or–Buy, the concave
function is linear in at first and becomes constant after one point. Figure 6.1.1. shows an example
cost function.

0 2 4 6 8 10
0

1

2

3

4

5

Load

C
os

t

Rent period
Buy period

Figure 6.1.1: Ex. Cost function when ce = 1,M = 5

1

6.1.2 Algorithm Recap

Algorithm 1 Single-source rent-or-buy

Given: Graph G = (V,E), source s, terminal T , costs ce for each edge e ∈ E

1: B ← {}
2: for t ∈ T do
3: Select t with probability 1

M and place it in the buy set B.

4: Construct a 2–approximate Steiner Tree F over {S} ∪B. Buy edges in F .
5: Connect every t ∈ T \B to F via shortest paths. Rent these edges.

6.1.3 Analysis

Let OPT denote the optimal solution’s cost, and c(F) :=
∑

e∈F ce. To show that the algorithm
gives us a constant factor approximation, it is sufficient to prove the following lemmas. See lecture
5 for the proof of Lemma 6.1.1 and how these two lemmas lead to a 4-approximation.

Lemma 6.1.1
E[M · c(F)] ≤ 2 ·OPT

Lemma 6.1.2

E[Rent cost of T \B] ≤ E[Buy cost of F] = E[M · c(F)]

Proof: Let’s delay the randomness and not select B until constructing the 2-approximate Steiner
Tree. We discussed earlier that Minimum Spanning Tree on terminals after metric completion is a
2-approximate Steiner Tree. So considering constructing running Prim algorithm from the source
node: at each step i, Prim algorithm picks the least cost edge ei = (u, v) going out of the current
tree, denoted as Ti. Assuming that u ∈ Ti, v /∈ Ti without the loss of generality, we add v into B
with probability 1

M . Then, let Ti+1 = Ti + ei, and iterate until the current tree spans {S} ∪ T .

Return that tree as T̂ r. Every edge in T̂ r is either rented or bought.

When the algorithm returns, we have flipped the coin for every terminal t ∈ T to decide whether
to include it into the buy set B, with independent probability 1

M , and the returned tree is a 2-

approximate Steiner Tree over B. So the expected buy cost T̂ r is exactly the same as the expected
buy cost of F given by the original algorithm. The rent cost may be lower in the original algorithm,
which find the shortest paths connecting T \B to S over all edges.

Consider the rent cost and buy cost in this algorithm. At every step i,

E[Increase in buy cost of Ti] =
1

M
·M · ce = ce

E[Increase in rent cost of Ti] = (1− 1

M
) · ce ≤ ce

Thus, after all these steps, E[Buy cost of Ti] ≤ E[Rent cost of Ti]. Thus,

E[Buy cost of B] = E[Buy cost of Ti] ≤ E[Rent cost of Ti] ≤ E[Rent cost of T \B]

2

http://pages.cs.wisc.edu/~shuchi/courses/880-F19/scribe-notes/lecture5-draft.pdf
http://pages.cs.wisc.edu/~shuchi/courses/880-F19/scribe-notes/lecture5-draft.pdf

See [Gupta et al., 2003, Kumar et al., 2002] for more.

6.2 Linear Programming

A linear programming problem has a set of variables, a set of linear constraints, and a linear
objective. For example,

minimize x + 3y Objective

s.t. y − 2x ≥ 5 Constraint

x, y ≥ 0 Constraint

Every linear programming problem can be expressed in the following canonical form

Maximize cTx

Subject to Ax ≤ b

and x ≥ 0

Feasible solutions of a linear program form a polyhedron, and the objective’s solution lies on extreme
points of the polyhedron. The linear programming problem can encode many other problems, and
there are polynomial time algorithms finding its solutions (or determine that no x satisfies all linear
constraints).

6.3 Integer Programming and LP relaxation

An integer (linear) programming (ILP) problem is a linear programming problem (LP) with addi-
tional constraints on some or all variables to be integers. While linear programming is solvable in
polynomial time, integer programming is NP–hard. The disparity of the running time between LP
and ILP enables approximate ILP’s solution efficiently by LP relaxation: first ignore the integer
constraint and solve the underlying LP, and then round off the LP solution to integers.

Since LP has relaxed the integrality constraints in the original problem, its feasible solutions are
wider than original ILP’s feasible solutions. Thus its objective function could at least attain value
that is as good as ILP’s optimal value (OPT). Therefore, besides providing an approximation, the
optimal value of LP relaxation (LP–OPT) also provides a lower bound of OPT. We define the ratio

OPT
LP−OPT as the integrality gap. The following diagram illustrate their relationships.

LP-OPT OPT

Rounded LP solution

Integrality Gap

Figure 6.3.2: LP-OPT as a lower bound of OPT

3

6.4 Linear Relaxation for Vertex Cover

A vertex cover problem asks to find the minimal-sized set S that “cover” all edges on a graph
G = (V,E), i.e., for every (u, v) ∈ E, we want either u ∈ S or v ∈ S. We can solve the vertex cover
problem using the following integer programming task as a subroutine :

minimize
∑
v∈V

xv

s.t. xv ∈ {0, 1} ∀v ∈ V

xu + xv ≥ 1 ∀(u, v) ∈ E

Let S = {v s.t. xv = 1}, then S would be a minimal vertex covering set.

6.4.1 LP-relaxation and rounding algorithm

Vertex cover problem is known to be NP-hard, so solving that integer programming problem would
be NP-hard too. Let’s consider its LP–relaxation:

minimize
∑
v∈V

x̂v

s.t. x̂u + x̂v ≥ 1 ∀(u, v) ∈ E

Then, let Ŝ = {v s.t. x̂v ≥ 1
2}

Claim 6.4.1 Ŝ is a vertex cover, i.e., for every (u, v) ∈ E, either u ∈ Ŝ or v ∈ Ŝ.

Proof: For every (u, v) ∈ E, the constraints enforce xu + xv ≥ 1, so either x̂u ≥ 1
2 , or x̂v ≥ 1

2 , or

both at least 1
2 . By construction of Ŝ, either Ŝ 3 u, or Ŝ 3 v, or containing both.

Claim 6.4.2 |Ŝ| ≤ 2|S|
Proof: Linear relaxation optimal provides a lower bound of the original OPT , so

|S| =
∑
v∈V

xv ≥
∑
v∈V

x̂v

Meanwhile, since S ⊆ V ∑
v∈V

x̂v ≥
∑
v∈S

x̂v ≥
1

2
|Ŝ|

It directly follows that |S| ≥ 1
2 |Ŝ|.

Thus, this LP relaxation and rounding algorithm gives a 2-approximation of the minimal vertex
cover. This is the best approximation ratio we can achieve using LP-OPT as the lower bound
because the integrality gap is also 2. Consider complete graph Kn, the minimal vertex cover is any
subset of size n − 1, so OPT =

∑
v∈V xv = n − 1. The LP–relaxation could find a solution where

xv = 1
2 for every vertex v ∈ V , so LP-OPT =

∑
v∈V x̂v = n

2 . So,

lim
n→∞

OPT

LP-OPT
= lim

n→∞

n− 1
n
2

= 2

4

In this example, the rounding of the LP-relaxation would then return Ŝ = V as the vertex cover.
Ŝ is indeed very close to the optimal (n− 1)–sized minimal vertex cover, but using LP-OPT as the
proxy lower bound of OPT, our analysis could only conclude that Ŝ is no larger than twice size of
the minimal vertex cover.

6.5 Linear Relaxation for Set Cover

Set cover is defined as follows: Given a ground set S of n elements, and a collection of subsets,
S1, ..., Sm, each subset Si associated with a cost ci, we want to find I ⊆ [m] such that ∪i∈ISi = S
and minimize

∑
i∈I ci.

It is a more general problem than vertex cover. We can transform a vertex cover problem on
G = (V,E) to a set cover problem by devising an element in S for each edge in E, and a set for
each node v, and let

Sv = {(u,w) | (u,w) ∈ E and (u or w = v)}, cv = 1

for each v ∈ V . Then the vertices associated with the sets in the minimal set cover is a minimal
vertex cover. Set cover is more expressive in that it can associate different costs with different sets.

The integer programming for the set cover is

minimize
∑
i

xici

s.t.
∑
i:Si3j

xi ≥ 1 for every j ∈ S

xi ∈ {0, 1} for every i ∈ [m]

We want to design an approximation algorithm using similar procedure: find a solution of the LP
relaxation, round it to integer solutions, and bound the loss in rounding. Its LP relaxation is

minimize
∑
i

xici

s.t.
∑
i:Si3j

xi ≥ 1 for every j ∈ S

xi ≥ 0 for every i ∈ [m]

Suppose we find a set of xi’s, it’s rather tricky to find a good rounding threshold t that we can
round xi to 1 if xi ≥ t and round xi to 0 otherwise. Any threshold greater than 1

m would potentially
allow some set of Si that are not set cover, but 1

m seems to be too small that the analysis could
not bound tighter than m-approximation. To address that, we use a new technique, randomized
rounding.

LP-OPT is the minimal value
∑

i xici achieves in the linear programming problem.

Claim 6.5.1

E

[∑
i∈I

ci

]
= LP-OPT

5

Algorithm 2 Randomized Rounding of Set Cover’s LP-relaxation

Input: The optimal solution of xi for every i ∈ [m] in the LP-relaxation

1: while I is not a Set Cover do
2: Initialize I as empty
3: for i ∈ [m] do
4: Add i to I independently with probability Xi

return I

Proof: Let Di be a indicator variable that is 1 if i ∈ I and is 0 otherwise. Then

E

[∑
i∈I

ci

]
= E

∑
i∈[m]

Di · ci


=

∑
i∈[m]

E[Di] · ci

=
∑
i∈[m]

Pr[i ∈ I] · ci

Pr[i ∈ I] = xi by construction, so

E

[∑
i∈I

ci

]
=

∑
i∈[m]

Pr[i ∈ I] · ci

=
∑
i∈[m]

xi · ci = LP-OPT

Claim 6.5.2 With high probability, the number of iterations needed until I is a set cover is O(log n)

Proof: First, consider the probability that some element j is left uncovered,

Pr[j /∈ ∪i∈ISi] = Pr[∀i s.t. Si 3 j, i /∈ I] =
∏

i:Si3j
(1− xi)

By constraints in the linear programming, xi ≥ 0 for any i, and
∑

i:Si3j xi ≥ 1. Thus,
∏

i:Si3j(1−xi)
is attained when all xi are equal, i.e., xi = 1

k , where k is the number of sets Si containing j. Then,

Pr[j /∈ ∪i∈ISi] =
∏

i:Si3j
(1− xi) ≤ (1− 1

k
)k ≤ 1

e

Since each iteration is independent, the probability that j is uncovered after t trials is at most 1
et .

By union bound, the probability that exists a j, such that j is uncovered after t trials is no more
than n · 1

et .

Pr[∃j that is uncovered after t trails] = Pr[number of steps ≥ t]

=⇒ Pr[number of steps ≥ 2 loge n] ≤ n · 1

e2 loge n
=

1

n

6

Thus, with probability (1− 1
n), the algorithm finds a set cover, and the set cover has expected cost

same as LP-OPT in O(log n) time.

See [Raghavan and Tompson, 1987, Feige, 1998] for more.

References

[Feige, 1998] Feige, U. (1998). A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652.

[Gupta et al., 2003] Gupta, A., Kumar, A., Pál, M., and Roughgarden, T. (2003). Approximation
via cost-sharing: a simple approximation algorithm for the multicommodity rent-or-buy problem.
In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages
606–615. IEEE.

[Kumar et al., 2002] Kumar, A., Gupta, A., and Roughgarden, T. (2002). A constant-factor ap-
proximation algorithm for the multicommodity rent-or-buy problem. In The 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002. Proceedings., pages 333–342. IEEE.

[Raghavan and Tompson, 1987] Raghavan, P. and Tompson, C. D. (1987). Randomized rounding:
a technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374.

7

	Finishing the proof of Rent–or–Buy Problem
	Multi-commodity Rent-or-Buy problem
	Algorithm Recap
	Analysis

	Linear Programming
	Integer Programming and LP relaxation
	Linear Relaxation for Vertex Cover
	LP-relaxation and rounding algorithm

	Linear Relaxation for Set Cover

