Formally Reasoning about (In)dependencies in Probabilistic Programs

Jialu Bao, Aug. 26th, 2022 A-Exam

Committee Members: Justin Hsu (Chair), Joseph Halpern, Dexter Kozen, Alexandra Silva

Formally Reasoning about (In)dependencies in Probabilistic Programs

Probabilistic Independence Conditional Independence Negative Dependence

Formally Reasoning about (In)dependencies in Probabilistic Programs

Syntax

Semantics

Imp $\quad c::=$ skip	
	$\mid x:=a$
	$\mid c_{1} ; c_{2}$
	\mid if b then c_{1} else c_{2}
	\mid while b do c
	$\mid x:=$ coin ()
	$\mid o b s e r v e(b)$

Distribution Transformer

Formally Reasoning about (In)dependencies in Probabilistic Programs

Motivating Example

How do we ensure the security of an encryption algorithm?

Plain text

Encrypted text

Plain text

Motivating Example

How do we ensure the security of an encryption algorithm?

Probabilistic Independence

Definition: random variables X, Y independent iff,

$$
\mathbb{P}(X, Y)=\mathbb{P}(X) \cdot \mathbb{P}(Y) .
$$

Intuition: the value of one variable does not give information about the other.
Example:

Motivating Example

How to we ensure the security of an encryption algorithm?

My Goal

Design formal methods to reason about independence and dependencies
in the distribution constructed by probabilistic programs.

Why Formal Methods and Which Kind?

Rigorous: unlike documentations in natural languages, formal specifications have no vagueness and can capture target properties exactly.

Axiomatic: a set of axioms and rules that a computer can follow, e.g. program logic, type systems.

Want relative simplicity:

Require less human ingenuity or human time.
Match better with pen-and-paper proofs.

My Existing Work

A Separation Logic for Negative Dependence. POPL 2022 Jialu Bao, Marco Gaboardi, Justin Hsu, Joseph Tassarotti.

A Bunched Logic for Conditional Independence. LICS 2021 Jialu Bao, Simon Docherty, Justin Hsu, Alexandra Silva.

Related Work

Probabilistic

 Programs- Kozen. [1981]
- ...
- Barthe, Hsu and Liao. [2020]
- My existing work

Probabilistic

(In)dependencies

- Barthe et al. [2017]
- Gorinova et al. [2022]

Formally Reasoning about Conditional Independence

Conditional Independence

Intuition: the value of X does not give information about the value of Y if we already know the value of Z.
Definition: Variables X, Y are conditionally independent given Z iff,

$$
\mathbb{P}(X, Y \mid Z)=\mathbb{P}(X \mid Z) \cdot \mathbb{P}(Y \mid Z)
$$

Example: ice cream sales and sunglasses sales

Applications of Conditional Independence

- Represent and transform a joint distribution more efficiently.

Our Goal

Design a program logic for proving conditional independence (CI)

Example: Precondition: \{ T \}

sunny $:=$ coin()
if sunny:
icecream := coin();
sunglasses := coin();
else:

- How to express CI as assertions?
- How to prove CI in programs?
icecream := False; sunglasses := False;

Post-condition: \{icecream, sunglasses are Cl given sunny \}

Notations

Var Set of all program variables
Val Set of possible values
[S] Set of program memories on a finite $S \subseteq$ Var,
where a program memory on S is a map of type $S \rightarrow \mathrm{Val}$
$\mathscr{D} W \quad$ Set of discrete distributions over a set W
$\mathscr{D}[S]$
$\mathscr{D M e m}$

$$
\bigcup_{T \subseteq \mathrm{Var}} \mathscr{D}[T]
$$

Visual Representation

Conditional Probability Distribution

a.k.a., Kernels

Input-preserving maps of type
$[S] \rightarrow \mathscr{D}[S \cup T]$

Visual Representation

Kernels

Input-preserving maps of type
$[\varnothing] \rightarrow \mathscr{D}[T]$

Intuition

X, Y are conditionally independent given Z in a distribution μ iff
Sample X, Y, Z
from μ

2a. Sample X given Z

2b. Separately sample Y given Z
\{Z\}

Bunched Logic ${ }_{\text {[OHemam andefym } 1 \text { 1990] }}$

A flexible framework to reason about separation

The logic of bunched implications (BI)

$$
P, Q::=p \in \mathscr{A} \mathscr{P}|\top| \perp|P \wedge Q| P \vee Q|P \Rightarrow Q| P * Q
$$

The conjunction * is substructural (no weakening or contraction)
Resource interpretation:

A BI model for Independence [Barthe et al. 2020]

Kripke Semantics Definition

Let states be $\mathscr{D M e m}$.
$\mu \vDash P * Q$ iff there exist μ_{1}, μ_{2} such that $\mu_{1} \vDash P, \mu_{2} \vDash Q$ and $\mu_{1} \oplus \mu_{2}=\mu$, where \oplus takes the independent product of two distributions.
$\mu \vDash\langle X\rangle$ iff there exists S such that $\mu \in \mathscr{D}[S]$ and $X \in S$.

Theorem
$\mu \vDash\langle X\rangle *\langle Y\rangle$ iff X, Y are independent in μ.

How do we adapt this logic for capturing conditional independence?

DIBI: Dependence and Independence BI [Bao et al. 2021]

$P, Q::=p \in \mathscr{A} \mathscr{P}|\top| \perp|P \wedge Q| P \vee Q|P \Rightarrow Q| P * Q \mid P ; Q$
A new non-commutative conjunction for modeling dependence: ${ }_{9}^{\circ}$

$$
\text { read " } P \text {; } Q \text { " as " } Q \text { may depend on } P \text { " }
$$

Sample proof rules for ;

$$
\begin{aligned}
& \frac{P \vdash R \quad Q \vdash S}{P \% Q \vdash R \stackrel{\circ}{\circ} S}{ }_{\varrho} \text {-Con」 }
\end{aligned}
$$

DIBI Model for Conditional Independence

Kripke Semantics Definition

Let states be the set of kernels:

We can lift any distribution μ to a kernel f by defining $f=[\varnothing] \mapsto \mu$

Semantics

Atomic Proposition

Domain S

$f \vDash S \triangleright T$ if the domain of f is exactly S and the range of f includes T.

Satisfaction Rules

$f \vDash P * Q$ iff there exist f_{1}, f_{2} such that $f_{1} \vDash P, f_{2} \vDash Q$ and $f_{1} \oplus f_{2}=\mu$. $f \vDash P ; Q$ iff there exist f_{1}, f_{2} such that $f_{1} \vDash P, f_{2} \vDash Q$ and $f_{1} \odot f_{2}=f$.

Binary Operator \odot for Interpreting ${ }_{9}^{\circ}$

Let \odot sequence two kernels together
$f \odot g$ is defined if the range of the f equals the domain of g.

Binary Operator \oplus for Interpreting *

Let \oplus take the product of two kernels.

$f \oplus g$ is defined iff $X \cap Y=\varnothing$.

Assert Conditional Independence

Theorem.

A sound and complete assertion logic for C1

In the probabilistic DIBI, X, Y are $\mathbf{C I}$ given Z in distribution μ iff

$$
f \vDash(\varnothing \triangleright Z) \stackrel{\circ}{q}(Z \triangleright X * Z \triangleright Y), \text { where } f=[\varnothing] \mapsto \mu
$$

Program Logic

Judgement: $\{\phi\} C\{\psi\}$
where $C \in \mathrm{PWhile}$, and
ϕ, ψ are formulas in the probabilistic model of DIBI.
Proof system: Sound though incomplete; decidability unknown.

A program logic for proving CI

Our Contributions

1. a new bunched logic (DIBI) with a sound and complete proof system.
2. a probabilistic DIBI model that can capture $\mathbf{C l}$.
3. a Hoare-style program logic to verify Cl .
4. a powerset DIBI model that can capture join dependencies.
https://arxiv.org/pdf/2008.09231

Formally Reasoning about Negative Dependence

Motivating Example: Balls-into-Bins

Intuition: unlikely for many bins to overflow together
$\mathbb{P}\left[\sum_{\text {bin }}\right.$ overflow $[$ bin $\left.] \geq 2\right] \leq ?$

Concentration Bounds

$Y=\sum_{i}^{n} Y_{i}$, where Y_{i} are independent, then $\mathbb{P}[|Y-\mathbb{E}[Y]| \geq M] \leq g(n, M)$

Motivating Example: Balls-into-Bins

Concentration bounds:

$$
\begin{aligned}
& Y=\sum_{i}^{n} Y_{i}, \text { where } Y_{i} \text { are } \begin{array}{c}
\text { negatively } \\
\text { dependent }
\end{array} \\
& \mathbb{P}[|Y-\mathbb{E}[Y]| \geq M] \leq f(n, M)
\end{aligned}
$$

The number of balls in each bin is negatively dependent.
$\mathbb{P}\left[\sum_{\text {bin }}\right.$ overflow $[$ bin $\left.] \geq 2\right] \leq ?$
Our goal: Prove negative dependence formally.

Negative Dependence

Negative Covariance
Negative Regression
Negative Association (NA)

Negative Right Orthant Dependence
Negative Quadrant Dependence

Negative Association (NA) [Joag-Dev and Proschan 1983]

Definition

Real-valued random variables X_{1}, \ldots, X_{n} satisfy NA iff
for any disjoint $Y, Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$,
for any monotone functions $f: \mathbb{R}^{|Y|} \rightarrow \mathbb{R}_{\geq 0}$ and $g: \mathbb{R}^{|Z|} \rightarrow \mathbb{R}_{\geq 0}$,

$$
\mathbb{E}[f(Y) \cdot g(Z)] \leq \mathbb{E}[f(Y)] \cdot \mathbb{E}[g(Z)] .
$$

Examples of NA [Joag-Dev and Proschan 1983]

Independent random variables
Deterministic variables
Bernoulli random variables that sum to 1
Uniformly random permutations

Closure of $\mathbf{N A}$ [Joag-Dev and Proschan 1983]

Subsets of NA variables are NA
Union of independent NA sets is also NA
Monotonically increasing map preserves NA

$\left\{Z_{1}, Z_{2}\right\}$ satisfies NA

A Bunched Logic for NA ${ }_{\text {[Bao et al. 2022] }}$

We introduce a negative association conjunction \rightarrow :
$P, Q::=p \in \mathscr{A} \mathscr{P}|\top| \perp|P \wedge Q| P \vee Q|P \Rightarrow Q| P * Q \mid P * Q$

Challenge: semantics for \circledast

Let states be \mathscr{D} Mem.
$\mu \vDash P \circledast Q$ iff there exist μ_{1}, μ_{2} such that $\mu_{1} \vDash P, \mu_{2} \vDash Q$ and $\mu \in \mu_{1} \otimes \mu_{2}$?

Subtle to define \otimes for NA star $*$

$\mu_{1} \otimes \mu_{2}$ has to be a set of distributions.
Natural choices don't validate required axioms:

$$
\overline{P \dashv \vdash}+\circledast I^{*} \text {-Unıt }
$$

$$
(P \circledast Q) \circledast R \quad \text { H• } P \circledast(Q \circledast R)
$$

Partition Negative Association (PNA) [Bao etal. 2022]

NA is a relation on a set of random variables.
PNA is a relation on a partition of random variables.

PNA satisfies similar closure properties as NA.

Lemma

X_{1}, \ldots, X_{n} satisfies NA iff partition $\left\{X_{1}\right\}, \ldots,\left\{X_{n}\right\}$ satisfies PNA.

Semantics for \circledast

Let states be \mathscr{D} Mem.
$\mu \in \mu_{1} \otimes \mu_{2}$ iff μ is a joint distribution of μ_{1}, μ_{2} and partition $\left\{\operatorname{dom}\left(\mu_{1}\right)\right.$, dom $\left.\left(\mu_{2}\right)\right\}$ satisfies PNA in μ.
$\mu \vDash P \circledast Q$ iff there exist μ_{1}, μ_{2} such that $\mu_{1} \vDash P, \mu_{2} \vDash Q$,
$\mu \in \mu_{1} \otimes \mu_{2}$.

A Bunched Logic for NA ${ }_{\text {[Bao et al. 2022] }}$

Theorem

$$
\mu \vDash\left\langle X_{1}\right\rangle \circledast\left\langle X_{2}\right\rangle \circledast \cdots \circledast\left\langle X_{n}\right\rangle \text { iff } X_{1}, X_{2}, \ldots, X_{n} \text { are }
$$

negatively associated in μ.

Theorem

Properties of PNA can be encoded as valid axioms in our logic.

Our Contributions

Assertion Logic (with a sound and complete proof system)
Separating conjunction for asserting negative association
Program Logic (with a sound proof system)
LINA: a probabilistic Separation Logic for Independence and NA
Applications
Verify Bloom filter and other probabilistic data structures

Future Work

Verifying Independence of Variables with Shared Randomness

Existing Methods for Independence

Fresh Randomness Fresh Randomness

Toy Example 1

Fair coin

$$
(X * Y) \wedge(X * Z) \wedge(Y * Z)
$$

Program logic can not prove X, Z independent, or Y, Z independent.

$$
Z=X \operatorname{xor} Y
$$

Toy Example 2

Box-Muller Transform

Use: two independent uniformly distributed variables U, V.

Output: two independent normally distributed variables X, Y.

$$
U=\operatorname{uniform}(0,1)
$$

$$
V=\operatorname{uniform}(0,1)
$$

$$
x=\sqrt{-2 \log _{2} U} \cos (2 \pi V)
$$

$$
Y=\sqrt{-2 \log _{2} U} \sin (2 \pi V)
$$

X, Y are independent
but we cannot prove it

Observation

Fair coin

$$
\begin{aligned}
& U=\text { uniform }(0,1) \\
& V=\text { uniform }(0,1) \\
& X=\sqrt{-2 \log _{2} U} \cos (2 \pi V) \\
& Y=\sqrt{-2 \log _{2} U} \sin (2 \pi V)
\end{aligned}
$$

Uniform distributions seems to be special!

$$
Z=X \text { xor } Y
$$

Naive Solution: Add Axioms!

Fact:

Given a finite group G with binary operation + .
If $U \sim$ uniform (G), random variable X takes value in Val and is independent from U, and $f, h: \mathrm{Val} \rightarrow G$.

Then variables $f(X)$ and $h(X)+U$ are independent no matter what f, h are.
If we add this fact as an axiom:
Add more axioms?
We can prove independence in toy example 1.
Still cannot prove independence in toy example 2 and Box-Muller.

Desired Solution

An assertion logic to capture the interactions between uniformity and independence so that

we can derive more axioms about uniformity and independence using its proof system;
and prove independence of variables that possibly share source of randomness.

Other Thoughts

NA Arisen from
Sampling

Conditional Independence From d-separation

Independence of
Variables with Shared Randomness

Questions?

