
Committee Members: Justin Hsu (Chair), Joseph Halpern, Dexter Kozen, Alexandra Silva

Formally Reasoning about 
(In)dependencies in  
Probabilistic Programs
Jialu Bao, Aug. 26th, 2022     A-Exam

1



Formally Reasoning about 
(In)dependencies in  
Probabilistic Programs

Probabilistic Independence 
Conditional Independence 
Negative Dependence

2



Formally Reasoning about 
(In)dependencies in  
Probabilistic Programs

3

Programs that may 
sample from distributions



Imp

PWhile

|  x := coin()

A distribution over  
program states

A distribution over  
program states 

Syntax                Semantics

|  observe(b) 
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m1 m2 m3 ⋯ mn m1 m2 m3 ⋯ mn

C

Distribution Transformer
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Motivating Example

6

How do we ensure the security of an encryption algorithm?



Check                does not give information about              .

Motivating Example
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How do we ensure the security of an encryption algorithm?



Probabilistic Independence

Definition: random variables  independent iff, 


.


Intuition: the value of one variable does not give information about the other. 


Example: 

X, Y

ℙ(X, Y) = ℙ(X) ⋅ ℙ(Y)

X ∼ Y ∼
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Motivating Example
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How to we ensure the security of an encryption algorithm?

Encode                       as probabilistic programs;

Verify              ,              are probabilistically independent.         

However, reasoning about 
probabilities can be hard.



My Goal

Design formal methods to reason about 

independence and dependencies 

in the distribution constructed by 

probabilistic programs.
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Why Formal Methods

Rigorous: unlike documentations in natural languages, formal specifications 
have no vagueness and can capture target properties exactly.


Axiomatic: a set of axioms and rules that a computer can follow,  e.g. program 
logic, type systems. 


Want relative simplicity: 


Require less human ingenuity or human time. 


Match better with pen-and-paper proofs. 

and Which Kind?
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My Existing Work

A Separation Logic for Negative Dependence. POPL 2022

Jialu Bao, Marco Gaboardi, Justin Hsu, Joseph Tassarotti. 

A Bunched Logic for Conditional Independence. LICS 2021

Jialu Bao, Simon Docherty, Justin Hsu, Alexandra Silva. 
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Related Work

Probabilistic  
Programs 
- Kozen. [1981]

- …

Probabilistic  
(In)dependencies

Separation Logic 
- O’Hearn and Pym. [1999]

- O’Hearn, Reynolds and Yang. [2001]

- Barthe et al. [2017] 

- Gorinova et al. [2022]


My existing work
Barthe, Hsu and Liao. [2020]
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Conditional Independence

Definition: Variables  are conditionally independent given  iff, 


.


Example: ice cream sales and sunglasses sales

X, Y Z

ℙ(X, Y ) = ℙ(X ) ⋅ ℙ(Y )

buy                    ∼buy             ∼

∣ Z ∣ Z ∣ Z

Intuition:  the value of  does not give information about the value of  
if we already know the value of .

X Y
Z
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sunny   

if sunny: 

∼



Represent and transform a joint distribution more efficiently. 

Applications of Conditional Independence
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X Y

Z



Our Goal
Design a program logic for proving conditional independence (CI)


Example:
sunny := coin() 
if sunny:  

icecream := coin(); 
sunglasses := coin();  

else:  
icecream := False;  
sunglasses := False; 

Precondition: { ⊤ }

Post-condition: {𝗂𝖼𝖾𝖼𝗋𝖾𝖺𝗆, 𝗌𝗎𝗇𝗀𝗅𝖺𝗌𝗌𝖾𝗌 are CI given 𝗌𝗎𝗇𝗇𝗒}

- How to express CI 
as assertions? 
- How to prove CI in 
programs?
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𝖵𝖺𝗋

𝖵𝖺𝗅

[S]

𝒟W

𝒟𝖬𝖾𝗆

Set of all program variables 


Set of possible values


Set of program memories on a finite , 


where a program memory on  is a map of type 


Set of discrete distributions over a set 


 

S ⊆ 𝖵𝖺𝗋

S S → 𝖵𝖺𝗅

W

⋃
T⊆𝖵𝖺𝗋

𝒟[T]

Notations
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𝒟[S]
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Range  S ∪ T
T ⊆ 𝖵𝖺𝗋

Domain  S
S ⊆ 𝖵𝖺𝗋

Conditional Probability Distribution 

Input-preserving maps of type 
[S] → 𝒟[S ∪ T]

Visual Representation
a.k.a., Kernels

 {S

 {T

 {S ⋯
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Range  T
T ⊆ 𝖵𝖺𝗋Domain ∅

Input-preserving maps of type 
[∅] → 𝒟[T]

Visual Representation
Kernels



 
=
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Intuition

{Z}

1. Sample Z

{Z, X}
{Z}

2a. Sample  
given 

X
Z

{Z, Y}
{Z}

2b. Separately 
sample  given Y Z

 are conditionally independent given  in a distribution  iff
X, Y Z μ

{X, Y, Z}

Sample  
from 

X, Y, Z
μ

[∅] → μ



Bunched Logic [O’Hearn and Pym 1999] 

A flexible framework to reason about separation  

The logic of bunched implications (BI) 





The conjunction ∗ is substructural (no weakening or contraction)


Resource interpretation:


P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q
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A BI model for Independence [Barthe et al. 2020]

*

Kripke Semantics Definition
Let states be .


 iff there exist  such that  and , 
where  takes the independent product of two distributions.


 iff there exists  such that  and .

𝒟𝖬𝖾𝗆

μ ⊧ P ∗ Q μ1, μ2 μ1 ⊧ P, μ2 ⊧ Q μ1 ⊕ μ2 = μ
⊕

μ ⊧ ⟨X⟩ S μ ∈ 𝒟[S] X ∈ S
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 iff  are independent in . μ ⊧ ⟨X⟩ ∗ ⟨Y⟩ X, Y μ

Theorem How do we adapt this logic 
 for capturing conditional 

independence?



A new non-commutative conjunction for modeling dependence:  ⨾

read “  ⨾ ” as “  may depend on ”


Sample proof rules for ⨾

P Q Q P

DIBI: Dependence and Independence BI [Bao et al. 2021]
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P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q ∣ P ⨾ Q



DIBI Model for Conditional Independence

*Let states be the set of kernels:


We can lift any distribution  to a kernel  by defining   μ f f = [∅] ↦ μ

Domain S Range  S ∪ T for finite S, T ⊆ 𝖵𝖺𝗋

Kripke Semantics Definition
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Atomic Proposition 
 if the domain of  is exactly  and the range of  includes .


Satisfaction Rules 
 iff there exist  such that  and . 


 iff there exist  such that  and . 

f ⊧ S ▹ T f S f T

f ⊧ P ∗ Q f1, f2 f1 ⊧ P, f2 ⊧ Q f1 ⊕ f2 = μ

f ⊧ P ⨾ Q f1, f2 f1 ⊧ P, f2 ⊧ Q f1 ⊙ f2 = f

Semantics
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Domain S
Range 

S ∪ T ∪ U ⊨ S ▹ T



Let  sequence two kernels together


 is defined if the range of the  equals the domain of .


⊙

f ⊙ g f g

( f ⊙ g)(s)(u) := ∑
t

f(s)(t) ⋅ g(t)(u)

Binary Operator  for Interpreting ⨾⊙

S T T U⊙

f g

S U

f ⊙ g

27



Binary Operator  for Interpreting ∗ ⊕
Let  take the product of two kernels. 


 is defined iff  .

⊕

f ⊕ g X ∩ Y = ∅

}deterministic

}randomized

⊕A
B

X

Y

A
B

X

A  B∪

Y

}A  B∪

f g f ⊕ g
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}

}



In the probabilistic DIBI,  are CI given  in distribution  iff 

⨾ , where 

X, Y Z μ

f ⊧ (∅ ▹ Z) (Z ▹ X ∗ Z ▹ Y) f = [∅] ↦ μ

Assert Conditional Independence

 
f = ⊙  
= ( )⊙ ⊕

⊨ ∅ ▹ Z ⊨ ∅ ▹ Z ⊨ Z ▹ X

⊨ Z ▹ Y
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Theorem. A sound and complete assertion logic for CI     



Program Logic

30

Judgement:  


  where , and 


   are formulas in the probabilistic model of DIBI. 


Proof system: Sound though incomplete; decidability unknown.

{ϕ}C{ψ}

C ∈ PWhile

ϕ, ψ

A program logic for proving CI     



Our Contributions

1. a new bunched logic (DIBI) with a sound and complete proof system. 

2. a probabilistic DIBI model that can capture CI. 

3. a Hoare-style program logic to verify CI.


4. a powerset DIBI model that can capture join dependencies.
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https://arxiv.org/pdf/2008.09231



Formally Reasoning about 
Negative Dependence
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ℙ[∑
bin

overflow[bin] ≥ 2] ≤ ?

Motivating Example: Balls-into-Bins
Intuition: unlikely for many bins to 

overflow together
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Sums

Concentration Bounds
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 , where  are independent,Y =
n

∑
i

Yi Yi then 
ℙ[ |Y − 𝔼[Y] | ≥ M] ≤ g(n, M)



ℙ[∑
bin

overflow[bin] ≥ 2] ≤ ?

Concentration bounds:

 , where  are independentY =
n

∑
i

Yi Yi

ℙ[ |Y − 𝔼[Y] | ≥ M] ≤ f(n, M)

The number of balls in each bin is 
negatively dependent.

Our goal: Prove negative 
dependence formally. 

negatively 
dependent

Not Independent!

Motivating Example: Balls-into-Bins
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Negative Dependence

Negative Association (NA) 

Negative Covariance
Negative Regression

Negative Right Orthant Dependence 

Negative Quadrant Dependence
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Definition
Real-valued random variables  satisfy NA iff 

for any disjoint , 


for any monotone functions  and ,  


    .

X1, …, Xn

Y, Z ⊆ {X1, …, Xn}

f : ℝ|Y| → ℝ≥0 g : ℝ|Z| → ℝ≥0

𝔼[ f(Y) ⋅ g(Z)] ≤ 𝔼[ f(Y)] ⋅ 𝔼[g(Z)]

Negative Association (NA) [Joag-Dev and Proschan 1983]
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Independent random variables

Deterministic variables

Bernoulli random variables that sum to 1

Uniformly random permutations

shuffle(cards); 
 = cards[i]Yi

Examples of NA [Joag-Dev and Proschan 1983]
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1 0 0

0 1 0

0 0 1

one-hot vectors

X1 X2 X3

p

q

1-p-q



Closure of NA [Joag-Dev and Proschan 1983]

Subsets of NA variables are NA

Union of independent NA sets is also NA

Monotonically increasing map preserves NA if two processes independent,
{ , , , …, } satisfies NA  X1 X2 Y1 Yn

shuffle(cards); 
 = cards[i]Yi

satisfies NA {Z1, Z2}

1 0 0

0 1 0

0 0 1

X1 X2 X3

 Z1 = X1 + Y1  Z2 = X2 + Yn
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A Bunched Logic for NA [Bao et al. 2022]

We introduce a negative association conjunction : ⊛

P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q ∣ P ⊛ Q
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Challenge: semantics for ⊛
Let states be .


 iff there exist  such that  and ?

𝒟𝖬𝖾𝗆

μ ⊧ P ⊛ Q μ1, μ2 μ1 ⊧ P, μ2 ⊧ Q μ = μ1 ⊗ μ2

Subtle to define  for NA star ⊗ ⊛
 has to be a set of distributions. 


Natural choices don’t validate required axioms:


μ1 ⊗ μ2

41

  (P ⊛ Q) ⊛ R   P ⊛ (Q ⊛ R)

 
⊛

     P ⊛ I

 
⊛

∈



Partition Negative Association (PNA) [Bao et al. 2022]

NA is a relation on a set of random variables.  
PNA is a relation on a partition of random variables.  

PNA satisfies similar closure properties as NA.  

Lemma 
 satisfies NA iff partition  satisfies PNA. X1, …, Xn {X1}, …, {Xn}
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Semantics for ⊛

Let states be .


 iff  is a joint distribution of ,  and partition
satisfies PNA in .


 iff there exist  such that , 
. 

𝒟𝖬𝖾𝗆

μ ∈ μ1 ⊗ μ2 μ μ1 μ2
{dom(μ1), dom(μ2)} μ

μ ⊧ P ⊛ Q μ1, μ2 μ1 ⊧ P, μ2 ⊧ Q
μ ∈ μ1 ⊗ μ2
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A Bunched Logic for NA [Bao et al. 2022]

Theorem

  iff  are 

negatively associated in . 

Theorem

Properties of PNA can be encoded as valid axioms in 

our logic.

μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ ⊛ ⋯ ⊛ ⟨Xn⟩ X1, X2, …, Xn

μ
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Our Contributions

Assertion Logic (with a sound and complete proof system)


Separating conjunction for asserting negative association


Program Logic (with a sound proof system) 

LINA: a probabilistic Separation Logic for Independence and NA


Applications 

Verify Bloom filter and other probabilistic data structures
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https://arxiv.org/abs/2111.14917

https://arxiv.org/abs/2111.14917


Future Work

Verifying Independence of  
Variables with Shared  
Randomness
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Existing Methods for 
Independence

Fresh Randomness

Y

Fresh Randomness

X
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Toy Example 1

X ∼

Y ∼

Z = X xor Y

(X ∗ Y) ∧ (X ∗ Z) ∧ (Y ∗ Z)Z

X Y
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Program logic can not  
prove  independent,  

or  independent. 
X, Z

Y, Z

Fair coin

Fair coin



Toy Example 2

U ∼ V ∼

X = (U = 3)

Y = (U + V = 8) X

U V

Y

 are independentX, Y

49

 are not independent.  
Program logic can not  

prove them independent.

X, Y
Y = (U + V = 7)



Box-Muller Transform
U = uniform(0,1) 

V = uniform(0,1) 

X =  

Y =  

−2 log2 U cos(2πV)

−2 log2 U sin(2πV)

X

U V

Y

Use: two independent uniformly 
distributed variables . 


Output: two independent normally 
distributed variables . 

U, V

X, Y

50

 are independent  
but we cannot prove it
X, Y



Observation

X ∼

Y ∼

Z = X xor Y

U = uniform(0,1) 

V = uniform(0,1) 

X =  

Y =  

−2 log2 U cos(2πV)

−2 log2 U sin(2πV)
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U ∼ V ∼

X = (U = 3)

Y = (U + V = 7)

Fair coin

Fair coin

Uniform distributions seems to be special!



Naive Solution: Add Axioms!
Fact: 

Given a finite group  with binary operation .


If , random variable  takes value in  and is independent 
from , and . 


Then variables  and  are independent no matter what  are. 


If we add this fact as an axiom: 


We can prove independence in toy example 1. 


Still cannot prove independence in toy example 2 and Box-Muller.

G +

U ∼ uniform(G) X 𝖵𝖺𝗅
U f, h : 𝖵𝖺𝗅 → G

f(X) h(X) + U f, h

Add more axioms?

52



Desired Solution

An assertion logic to capture the 
interactions between uniformity and 
independence so that  

we can derive more axioms about uniformity and 
independence using its proof system;  

and prove independence of variables that possibly 
share source of randomness. 
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Other Thoughts

Independence of  
Variables with Shared  
Randomness

NA Arisen from 
Sampling Conditional  

Independence  
From d-separation
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Questions?
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