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Motivating Example

How do we ensure the security of an encryption algorithm?
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Plain text Encrypted text Plain text



Motivating Example

How do we ensure the security of an encryption algorithm?

Check D does not give information about @ :

Encrypted text Plain text



Probabilistic Independence

Definition: random variables X, Y independent iff,

P(X,Y) = P(X) - P(Y).

Intuition: the value of one variable does not give information about the other.

Example:

2
X~

I .



Motivating Example

How to we ensure the security of an encryption algorithm?

Encode @:‘ as probabilistic programs;

Encryption

e [F] 1]

Plaintext =~ Encrypted text

However, reasoning about
probabilities can be hard.
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are probabilistically iIndependent.



My Goal

Design formal methods to reason about
iIndependence and dependencies

INn the distribution constructed by
probabilistic programs.



Why Formal Methods and Which Kind?

Rigorous: unlike documentations in natural languages, formal specifications
have no vagueness and can capture target properties exactly.

Axiomatic: a set of axioms and rules that a computer can follow, e.g. program
logic, type systems.

Want relative simplicity:
Require less human ingenuity or human time.

Match better with pen-and-paper proofs.
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My EXxisting Work

A Separation Logic for Negative Dependence. POPL 2022

Jialu Bao, Marco Gaboardi, Justin Hsu, Joseph Tassarotti.

A Bunched Logic for Conditional Independence. LICS 2021

Jialu Bao, Simon Docherty, Justin Hsu, Alexandra Silva.
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Related Work Separation Logic

- O’Hearn and Pym. [1999]
- O’Hearn, Reynolds and Yang. [2001]

o Barthe, Hsu and Liao. [2020]
O My existing work

Probabilistic
Programs Probabilistic
- Kozen. [1961) (In)dependencies

- Barthe et al. [2017]
- Gorinova et al. [2022]
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Conditional Independence

Intuition: the value of X does not give information about the value of Y
if we already know the value of Z.

Definition: Variables X, ¥ are conditionally independent given Z iff,

PX,Y|Z)=PXI|Z2)-P(Y|Z).

Example: ice cream sales and sunglasses sales

a
/)

if sunny:

// 0
buy @8 ~ ‘%. buy .v' ~ \%I
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Applications of Conditional Independence

O Represent and transform a joint distribution more efficiently.

d o




Our Goal

Design a program logic for proving conditional independence (Cl)

Example: Precondition: { T }

sunny = coin() - How to express CI
1T sunny: as assertions?
1cecream := coin(); - How to prove ClI in
sunglasses := coin(); programs?
else:
icecream := False;
sunglasses := False;

Post-condition: {icecream, sunglasses are Cl given sunny }
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Notations

Var Set of all program variables
Val Set of possible values
[S] Set of program memories on a finite S C Var,

where a program memory on S is a map of type § — Val

IW Set of discrete distributions over a set W D[S]
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Visual Representation

Conditional Probability Distribution a.k.a., Kernels

Input-preserving maps of type

[S] = D[SUT]

Domain $ Range SU T
C C
S{% S{ S C Var T C Var

Al
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Visual Representation

Kernels

Input-preserving maps of type

| D] = D[T] Domain & Range 7
I C Var



Intuition

X, Y are conditionally independent given Z in a distribution g iff

Sample X, Y, ”Z 1. Sample Z 2a. Sample X 2b. Separa.tely
from u given Z sample Y given Z

{Z, X}
(X.v,Zz} — q £} £} {Z}w
{Z, Y}
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Bu nChed LOQ ic [O’Hearn and Pym 1999]

A flexible framework to reason about separation

The logic of bunched implications (Bl)
PO:=pedP|T|L|PAQ|PVQ|P=>Q]|P:0
The conjunction = is substructural (ho weakening or contraction)

Resource interpretation:
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A Bl model for Independence (sarthe et al. 2020]

Kripke Semantics Definition

et states be Y Mem.

u E P« Q iff there exist yy, 4, such that u; F P, u, F Q and u; @ u, = u,

where @ takes the independent product of two distributions.

u E (X) iff there exists S such that y € J[S]and X € S.

Theorem How do we adapt this logic
u F(X) « (Y) iff X, Y are independent in p.

for capturing conditional
iIndependence?
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DIBIl: Dependence and Independence Bl [Bao et al. 2021]

P,O:=pedP|T|LI|IPANOQ|PVO|P=>Q|P«Q|P:0

. . . . O
A new non-commutative conjunction for modeling dependence: q

read “P 3 O” as “0 may depend on P”
Sample proof rules for g

PFR OFS

5-ASSOC ————  — §5-CoNy

(P5Q)sRA- PS(Q5R) P3O+R3S
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DIBI Model for Conditional Independence

Kripke Semantics Definition

et states be the set of kernels:

Domain § Range SU T for finite S, 7 C Var

We can lift any distribution u to a kernel f by defining f =[] — u
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Semantics

_ Range
. o DomalnSg SUTUU FSD>T
Atomic Proposition

f E S > T if the domain of fis exactly S and the range of fincludes 7.

Satisfaction Rules

f E P « Q iff there exist f1,/, such that f, F P,f, F Qand f; & f, = u.
f E P ¢ Qiff there exist f;,f, such thatf; F P,f, F Qandf, © f, =/.



Binary Operator © for Interpreting ;

Let © sequence two kernels together

f © g is defined if the range of the f equals the domain of g.

(fO @)(s)(w) == ) fls)(t) - g(t)(u)



Binary Operator @ for Interpreting =

Let & take the product of two kernels.

}(randomized
de’nerm‘%9

@ gisdefinediff XNY = .




Assert Conditional Independence

Theorem.

A sound and complete assertion logic for CI

In the probabilistic DIBI, X, Y are Cl given Z in distribution 1 iff

fE@D2)s(Z>X«ZD>Y),wheref=[T] — u

e Q@(ﬁ@\ )

e zox

~H
|




Program Logic

Judgement: {¢ } C{y}
where C € PWhile, and

@,y are formulas in the probabilistic model of DIBI.

Proof system: Sound though incomplete; decidability unknown.

A program logic for proving CI
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Our Contributions

1. a new bunched logic (DIBIl) with a sound and complete proof system.
2. a probabilistic DIBI model that can capture CI.
3. a Hoare-style program logic to verify CI.

4. a powerset DIBlI model that can capture join dependencies.

https://arxiv.org/pdf/2008.09231
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Formally Reasoning about
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Motivating Example: Balls-into-Bins

Intuition: unlikely for many bins to
overflow together

| lz overflow[bin] > 2] <?
bin
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Concentration Bounds

n
Y = 2 Y; , where Y; are independent, then |

l

(1Y —

(Y]] > M] L gn,M)

i
(LU
"l'mhl 'II“L | S\

Distribution of

Sunms




Motivating Example: Balls-into-Bins

Concentration bounds:

n
. negatively
r= Z £, where I;are dependent

P[|Y = E[Y]] > M] < fin. M)

The number of balls in each bin is
negatively dependent.

| l Z overflow|bin] 2 2] <7 Our goal: Prove negative
bin dependence formally.

Not Independent!
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Negative Dependence

Negative Covariance

Negative Regression
Negative Association (NA)

Negative Right Orthant Dependence

Negative Quadrant Dependence
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Negative ASSOCiatiOTI (NA) [Joag-Dev and Proschan 1983]

Real-valued random variables X, ..., X, satisfy NA iff
for any disjoint ¥, Z C {X,,..., X },

for any monotone functions f : | Ly spand g : | 2l 5 >0

—[f(Y) - (L)) < E[AY)] - E[g(D)] .
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Examples Of NA [Joag-Dev and Proschan 1983]

Independent random variables
S | one-hot vectors
Deterministic variables

Bernoulli random variables that sum to 1
p [ 1]{o]0

Uniformly random permutations
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C|OSU e Of NA [Joag-Dev and Proschan 1983]
Xl X2

hufttl ds);

Subsets of NA variables are NA ; S c;r(ngi] )

Union of independent NA sets is also NA nn

Monotonically increasing map preserves NA if two processes independent,
X, X5, Y, ..., Y } satisfies NA

T\

ZIZXI Yl ZZZXZ_I_YH

2, Z, }satisfies NA

39



A Bunched Logic for NA o etal. 2022

We Introduce a negative association conjunction

PO:=pedP|T|LIPANQ|PVO|P=>Q|P+«0Q|]
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Challenge: semantics for )

| et states be Y Mem.

uE P ® Q iff there exist u, u, suchthat ui F P,u, F Qand u € p; @ p»?

11 & U, has to be a set of distributions.

Natural choices don’t validate required axioms:

—® -UNIT —® -ASSOC
PP ®1 P®O®R - PRQBR)
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Partition Negative Association (PNA) sxo et a. 2022

NA Is a relation on a set of random variables.
PNA Is a relation on a partition of random variables.

PNA satisfies similar closure properties as NA.

X, ..., X satisfies NA iff partition {X,}, ..., {X } satisfies PNA.
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Semantics for ¢¥

| et states be Y Mem.

U E U Q W, iff yis a joint distribution of y, i, and partition
tdom(y,), dom(u,) }satisfies PNA in .

i E P @& Q iff there exist y, u, such that y, £ P, u, E Q,
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A Bunched Logic for NA o etal. 2022

uF <X1> % <X2> O o ¥ <Xn> ifle,Xz, ’Xn are

In /L.

Properties of PNA can be encoded as valid axioms In

our logic.
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Our Contributions

Assertion Logic (with a sound and complete proof system)
Separating conjunction for asserting negative association
Program Logic (with a sound proof system)
LINA: a probabilistic Separation Logic for Independence and NA
Applications

Verify Bloom filter and other probabilistic data structures
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https://arxiv.org/abs/2111.14917

Future Work

Verifying Independence of
Variables with Shared
Randomness




Existing Methods for
Independence

Fresh Randomness Fresh Randomness
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Toy Example 1

Fair coin

./
X~ ¢
é >I

Fair coin

/
Y~ ¢

X« Y)ANX«Z)AN(Y «Z)

Program logic can not
X . prove X, Z independent,

or Y, Z independent.
/ =XxorY
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Toy Example 2

5 s O O
X = (U=3) 1\1 X, Y are independent
@ O

Y=U+V=7)
X, Y are not independent.

Program logic can not
prove them independent.
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Box-Muller Transform

U = uniform(0,1)
Use: two independent uniformly
distributed variables U, V. V.= uniform(0,1)
Output: two independent normally X = 4/=2log, Ucos(2zV)

distributed variables X, Y.

Y = 4/=2log, Usin(2zV)
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Observation

Fair coin
" uniform(®,1)

0% O U
\O U~ V~
X~ V = uniform(0,1)
é‘ >I X = (U=3)

X = 4/—2log, U cos(2xV)

Fair coin
& Y=U+VvV=7)

Y = 4/=2log, Usin(2zV)
Y ~ \

I .

/ = XxorY

Uniform distributions seems to be special!

o)



Naive Solution: Add Axioms!

Fact:
Given a finite group G with binary operation +.

If U ~ uniform(G), random variable X takes value in Val and is independent
from U,and f,h : Val —» G.

Then variables f(X) and A(X) + U are independent no matter what £, /4 are.

If we add this fact as an axiom:

Add more axioms?

We can prove independence Iin toy example 1.

Still cannot prove independence in toy example 2 and Box-Muller.
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Desired Solution

An assertion to capture the
Interactions between uniformity and
Independence so that

we can derive more axioms about uniformity and
Independence ;

and prove independence of variables that possibly
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Other Thoughts

NA Arisen from Conditional

Sampling Independence
From d-separation

Independence of
Variables with Shared
Randomness




Questions?



