Formally Reasoning about (In)dependencies in Probabilistic Programs

Jialu Bao, Aug. 26th, 2022 A-

Committee Members: Justin Hsu (Chair), Joseph Halpern, Dexter Kozen, Alexandra Silva

A-Exam

Formally Reasoning about (In)dependencies in **Probabilistic Independence** Probabilistic Programs **Conditional Independence Negative Dependence**

Formally Reasoning about (In)dependencies in **Probabilistic Programs Programs that may** sample from distributions

Syntax

Semantics

Distribution Transformer

Formally Reasoning about (In)dependencies in Probabilistic Programs

Motivating Example

How do we ensure the security of an encryption algorithm?

Motivating Example

How do we ensure the security of an encryption algorithm?

Encrypted text

Check $\left\| \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right\|$ **does not give information about** $\left\| \begin{array}{c} \\ \\ \\ \end{array} \right\|$.

Plain text

Probabilistic Independence

Definition: random variables X, Y independent iff,

Example:

- $\mathbb{P}(X, Y) = \mathbb{P}(X) \cdot \mathbb{P}(Y).$
- **Intuition:** the value of one variable does not give information about the other.

Motivating Example

How to we ensure the security of an encryption algorithm?

as probabilistic programs;

However, reasoning about probabilities can be hard.

My Goal

Design formal methods to reason about independence and dependencies in the distribution constructed by probabilistic programs.

Why Formal Methods and Which Kind?

Rigorous: unlike documentations in natural languages, formal specifications have no vagueness and can capture target properties exactly.

Axiomatic: a set of axioms and rules that a computer can follow, e.g. program logic, type systems.

Want relative simplicity:

Require less human ingenuity or human time.

Match better with pen-and-paper proofs.

My Existing Work

A Separation Logic for **Negative Dependence**. POPL 2022 Jialu Bao, Marco Gaboardi, Justin Hsu, Joseph Tassarotti.

A Bunched Logic for Conditional Independence. LICS 2021 Jialu Bao, Simon Docherty, Justin Hsu, Alexandra Silva.

Related Work

- O'Hearn and Pym. [1999] - O'Hearn, Reynolds and Yang. [2001]

Probabilistic Programs - Kozen. [1981]

. . .

- Barthe et al. [2017] - Gorinova et al. [2022]

Separation Logic

• Barthe, Hsu and Liao. [2020] • My existing work

Probabilistic (In)dependencies

Formally Reasoning about Conditional Independence

Conditional Independence

if we already know the value of Z.

Definition: Variables X, Y are conditionally independent given Z iff,

Example: ice cream sales and sunglasses sales

- **Intuition:** the value of X does not give information about the value of Y

 - $\mathbb{P}(X, Y \mid Z) = \mathbb{P}(X \mid Z) \cdot \mathbb{P}(Y \mid Z).$

Applications of Conditional Independence

Represent and transform a joint distribution more efficiently.

Our Goal

Design a program logic for proving conditional independence (CI)

Example: Precondition: $\{ \top \}$

- sunny := coin()
- if sunny:
 - icecream := coin(); sunglasses := coin();
- else:

- How to express CI as assertions? - How to prove Cl in programs?

icecream := False;

sunglasses := False;

Post-condition: {icecream, sunglasses are CI given sunny }

Notations

- Var Set of all program variables
- Val Set of possible values
- Set of program memories on a finite $S \subseteq Var$, [S]

 - Set of discrete distributions over a set W
- **Mem**

 $\mathcal{D}W$

T⊆Var

where a program memory on S is a map of type $S \rightarrow Val$

Visual Representation

Conditional Probability Distribution

Input-preserving maps of type $[S] \to \mathscr{D}[S \cup T]$

a.k.a., Kernels

Range $S \cup T$ $T \subseteq Var$

Visual Representation

Input-preserving maps of type $[\emptyset] \to \mathscr{D}[T]$

Intuition

X, Y are conditionally independent given Z in a distribution μ iff

Sample X, Y, Z1. Sample Zfrom μ

2a. Sample Xgiven Z

Bunched Logic [O'Hearn and Pym 1999]

A flexible framework to reason about separation

The logic of bunched implications (BI)

$$P, Q ::= p \in \mathscr{AP} \mid \top \mid \bot \mid P \land Q \mid P \lor Q \mid P \Rightarrow Q \mid P \ast Q$$

The conjunction * is substructural (no weakening or contraction)

Resource interpretation:

A BI model for Independence [Barthe et al. 2020] **Kripke Semantics Definition** Let states be $\mathscr{D}Mem$.

where \oplus takes the **independent product** of two distributions.

 $\mu \models \langle X \rangle$ iff there exists S such that $\mu \in \mathscr{D}[S]$ and $X \in S$.

Theorem

 $\mu \models \langle X \rangle \ast \langle Y \rangle$ iff X, Y are independent in μ .

- $\mu \models P \ast Q$ iff there exist μ_1, μ_2 such that $\mu_1 \models P, \mu_2 \models Q$ and $\mu_1 \oplus \mu_2 = \mu$,

How do we adapt this logic for capturing conditional independence?

DIBI: Dependence and Independence BI [Bao et al. 2021]

$P, Q ::= p \in \mathscr{AP} \mid \top \mid \bot \mid P \land Q \mid P \lor Q \mid P \Rightarrow Q \mid P \ast Q \mid P ; Q$

A new non-commutative conjunction for modeling dependence: $\mathbf{\hat{q}}$

read "P : Q" as "Q may depend on P"

Sample proof rules for ;

 $(P \circ Q) \circ R \rightarrow P \circ (Q \circ R) \circ Assoc$

DIBI Model for Conditional Independence Kripke Semantics Definition

Let states be the set of kernels:

Domain S

We can lift any distribution μ to a kernel f by defining $f = [\emptyset] \mapsto \mu$

Range $S \cup T$ for finite $S, T \subseteq Var$

Semantics

Atomic Proposition

 $f \models S \triangleright T$ if the domain of f is **exactly** S and the range of f **includes** T.

Satisfaction Rules

 $f \models P \ast Q$ iff there exist f_1, f_2 such that $f_1 \models P, f_2 \models Q$ and $f_1 \oplus f_2 = \mu$. $f \models P$; Q iff there exist f_1, f_2 such that $f_1 \models P, f_2 \models Q$ and $f_1 \odot f_2 = f$.

Binary Operator () for Interpreting ^o

Let \odot sequence two kernels together

 $f \odot g$ is defined if the range of the f equals the domain of g.

 $(f \odot g)(s)(u) := \sum f(s)(t) \cdot g(t)(u)$

Binary Operator \oplus for Interpreting *

Let \oplus take the product of two kernels.

$f \oplus g$ is defined iff $X \cap Y = \emptyset$.

Assert Conditional Independence Theorem. A sound and complete assertion logic for Cl

In the probabilistic DIBI, X, Y are CI given Z in distribution μ iff

$f \models (\emptyset \triangleright Z)^\circ (Z \triangleright X * Z \triangleright Y)$, where $f = [\emptyset] \mapsto \mu$

Program Logic

Judgement: $\{\phi\}C\{\psi\}$

where $C \in PW$ hile, and

 ϕ, ψ are formulas in the probabilistic model of DIBI.

Proof system: Sound though incomplete; decidability unknown.

A program logic for proving Cl

Our Contributions

- 2. a probabilistic DIBI model that can capture CI.
- 3. a Hoare-style program logic to verify CI.
- 4. a powerset DIBI model that can capture join dependencies.

https://arxiv.org/pdf/2008.09231

1. a new bunched logic (DIBI) with a sound and complete proof system.

Formally Reasoning about Negative Dependence

Intuition: unlikely for many bins to overflow together

Concentration Bounds

$Y = \sum_{i} Y_i$, where Y_i are independent, then $\mathbb{P}[|Y - \mathbb{E}[Y]| \ge M] \le g(n, M)$

Sample size _____ Distribution of Sums -

Motivating Example: Balls-into-Bins Concentration bounds: $Y = \sum Y_i$, where Y_i are overflow[bin] $\geq 2 \leq ?$ bin

Not Independent!

negatively dependent $\mathbb{P}[|Y - \mathbb{E}[Y]| \ge M] \le f(n, M)$

The number of balls in each bin is negatively dependent.

> **Our goal**: Prove negative dependence formally.

Negative Dependence

Negative Covariance

Negative Regression **Negative Association (NA)**

Negative Quadrant Dependence

- Negative Right Orthant Dependence

Negative Association (NA) [Joag-Dev and Proschan 1983]

Definition

Real-valued random variables X_1, \ldots, X_n satisfy NA iff for any disjoint $Y, Z \subseteq \{X_1, \ldots, X_n\}$, for any monotone functions $f : \mathbb{R}^{|Y|} \to \mathbb{R}_{>0}$ and $g : \mathbb{R}^{|Z|} \to \mathbb{R}_{>0}$,

$\mathbb{E}[f(Y) \cdot g(Z)] \leq \mathbb{E}[f(Y)] \cdot \mathbb{E}[g(Z)] .$

Examples of NA [Joag-Dev and Proschan 1983]

Independent random variables **Deterministic variables** Bernoulli random variables that sum to 1 Uniformly random permutations

Closure of NA [Joag-Dev and Proschan 1983]

Subsets of NA variables are NA Union of independent NA sets is also NA Monotonically increasing map preserves NA

if two processes independent, $\{X_1, X_2, Y_1, \dots, Y_n\}$ satisfies NA $Z_1 = X_1 + Y_1$ $Z_2 = X_2 + Y_n$

 $\{Z_1, Z_2\}$ satisfies NA

A Bunched Logic for NA [Bao et al. 2022]

We introduce a negative association conjunction (*):

$P,Q ::= p \in \mathscr{AP} \mid \top \mid \bot \mid P \land Q \mid P \lor Q \mid P \Rightarrow Q \mid P \ast Q \mid P \circledast Q$

Challenge: semantics for (*)

Let states be $\mathscr{D}Mem$.

$\mu \models P \circledast Q$ iff there exist μ_1, μ_2 such that $\mu_1 \models P, \mu_2 \models Q$ and $\mu \in \mu_1 \otimes \mu_2$? Subtle to define \otimes for NA star \otimes

 $\mu_1 \otimes \mu_2$ has to be a set of distributions. Natural choices don't validate required axioms:

Partition Negative Association (PNA) [Bao et al. 2022]

NA is a relation on a set of random variables. PNA is a relation on a partition of random variables.

PNA satisfies similar closure properties as NA.

Lemma X_1, \ldots, X_n satisfies NA iff partition $\{X_1\}, \ldots, \{X_n\}$ satisfies PNA.

Semantics for (*)

I et states be Mem.

 $\{dom(\mu_1), dom(\mu_2)\}\$ satisfies PNA in μ .

 $\mu \models P \circledast Q$ iff there exist μ_1, μ_2 such that $\mu_1 \models P, \mu_2 \models Q$, $\mu \in \mu_1 \otimes \mu_2$.

- $\mu \in \mu_1 \otimes \mu_2$ iff μ is a joint distribution of μ_1 , μ_2 and partition

A Bunched Logic for NA [Bao et al. 2022]

Theorem

$$\mu \models \langle X_1 \rangle \circledast \langle X_2 \rangle \circledast \cdots$$

negatively associated in μ .

Theorem

our logic.

$\bigotimes \langle X_n \rangle$ iff X_1, X_2, \ldots, X_n are

Properties of PNA can be encoded as valid axioms in

Our Contributions

- Assertion Logic (with a sound and complete proof system)
 - Separating conjunction for asserting negative association
- **Program Logic** (with a sound proof system)
 - LINA: a probabilistic Separation Logic for Independence and NA

Applications

Verify Bloom filter and other probabilistic data structures

https://arxiv.org/abs/2111.14917

Future Work

Verifying Independence of Variables with Shared Randomness

Existing Methods for Independence

Fresh Randomness Fresh Randomness **V**/ Λ L

Toy Example 1

Fair coin

 $Z = X \operatorname{xor} Y$

Program logic can not prove X, Z independent, or Y, Z independent.

$(X * Y) \land (X * Z) \land (Y * Z)$

Toy Example 2

X = (U = 3)

Y = (U + V = 7)

X, Y are not independent. Program logic can not prove them independent.

X, Y are independent

Box-Muller Transform

Use: two independent uniformly distributed variables U, V.

Output: two independent normally distributed variables X, Y.

- U = uniform(0, 1)
- = uniform(0,1)V

$$X = \sqrt{-2\log_2 U}\cos(2\pi V)$$

$$Y = \sqrt{-2\log_2 U}\sin(2\pi V)$$

X, Y are independent but we cannot prove it

Observation

Fair coin

Fair coin

X = (U = 3)

Y = (U + V = 7)

 $Z = X \operatorname{xor} Y$

U = uniform(0, 1)V = uniform(0, 1) $X = \sqrt{-2\log_2 U}\cos(2\pi V)$ $Y = \sqrt{-2\log_2 U} \sin(2\pi V)$

Uniform distributions seems to be special!

Naive Solution: Add Axioms! Fact:

- Given a finite group G with binary operation +.
- If $U \sim uniform(G)$, random variable X takes value in Val and is independent from U, and $f, h : Val \rightarrow G$.

- If we add this fact as an axiom:
 - We can prove independence in toy example 1.
 - Still cannot prove independence in toy example 2 and Box-Muller.

Then variables f(X) and h(X) + U are independent no matter what f, h are.

Add more axioms?

Desired Solution

An assertion logic to capture the interactions between uniformity and independence so that

we can derive more axioms about uniformity and independence using its proof system;

and prove independence of variables that possibly share source of randomness.

Other Thoughts

Independence of **Variables with Shared** Randomness

NA Arisen from Sampling

Conditional Independence **From d-separation**

Questions?