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The Impossibility Result

• Theorem. No consensus system is totally correct in spite of one fault in 
asynchronous system: 


• Messages maybe delayed arbitrarily and delivered out of order.


• Processes do not have access to synchronized clocks. 


• Processes cannot detect the death of others. 
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• Claim 1. There exists a bivalent initial configuration  in . C P

• Claim 2. Given a bivalent configuration  and a step  that is applicable to 
, there is a schedule  that applies  in the last step and keeps the 

configuration  bivalent.

C e
C σ e
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• Claim 1 and Claim 2 implies there is an admissible run in  that stays in 
bivalent configuration, which contradicts with the total correctness. 

P
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