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A system (or protocol) consists of 
- a set of initial configurations;  
- deterministic transition function  
of each process   
 

ti
Pi



Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

5

Buffer 



Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

5

Buffer 

Schedule



Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

5

Buffer 

Schedule



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

One step{

6



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

One step{

6



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3One step{

6



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3One step{  can perform 
- internal updates 
- send (p, m)

ti

6



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3One step{  can perform 
- internal updates 
- send (p, m)

ti

6

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3One step{  can perform 
- internal updates 
- send (p, m)

ti

6

( , 0) P2

( , 0) P4

send (p, m)   
achieved by 
putting (p, m) 
in buffer

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

7

( , 0) P2

( , 0) P4

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

7

( , 0) P2

( , 0) P4

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

7

( , 0) P2

( , 0) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

7

( , 0) P2

( , 0) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

7

( , 0) P2

( , 0) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

7

( , 0) P2

( , 0) P4

( , null) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

7

( , 0) P2

( , 0) P4

( , null) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

7

( , 0) P2

( , 0) P4

( , null) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

Not delayed: 
Receive( ) non-
deterministically choose 

a message to  

i

Pi
null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

7

( , 0) P2

( , 0) P4( , null) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

Not delayed: 
Receive( ) non-
deterministically choose 

a message to  

i

Pi

0

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

t4(P4, m4)

7

( , 0) P2

( , 0) P4( , null) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

Not delayed: 
Receive( ) non-
deterministically choose 

a message to  

i

Pi

0

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

t4(P4, m4)

=Receive(1)m1

7

( , 0) P2

( , 0) P4( , null) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

Not delayed: 
Receive( ) non-
deterministically choose 

a message to  

i

Pi

0

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

t4(P4, m4)

=Receive(1)m1

t1(P1, m1)
7

( , 0) P2

( , 0) P4( , null) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

Not delayed: 
Receive( ) non-
deterministically choose 

a message to  

i

Pi

0

null

send( , init)P2
send( , init)P4



Processes init 0 init 1 init 0 init 1

Buffer 

P1 P2 P3 P4

=Receive(3)m3

( , )t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

t4(P4, m4)

=Receive(1)m1

t1(P1, m1)
A run

7

( , 0) P2

( , 0) P4( , null) P4

Message delayed: 
Receive( ) returns null, 
and buffer unchanged 

i

send( , )P4 m2

Not delayed: 
Receive( ) non-
deterministically choose 

a message to  

i

Pi

0

null

send( , init)P2
send( , init)P4



Total Correctness

8



Total Correctness
•  is accessible in a system  if  is reachable from an initial configuration  in . C′ P C′ C P

8



Total Correctness
•  is accessible in a system  if  is reachable from an initial configuration  in . C′ P C′ C P

• A run is admissible if  process is faulty and all messages sent to non-faulty 
processes are eventually delivered. 

≤ 1

8



Total Correctness
•  is accessible in a system  if  is reachable from an initial configuration  in . C′ P C′ C P

• A run is admissible if  process is faulty and all messages sent to non-faulty 
processes are eventually delivered. 

≤ 1

• A system  is total correct in spite of one fault ifP

8



Total Correctness
•  is accessible in a system  if  is reachable from an initial configuration  in . C′ P C′ C P

• A run is admissible if  process is faulty and all messages sent to non-faulty 
processes are eventually delivered. 

≤ 1

• A system  is total correct in spite of one fault ifP

Termination: in any admissible run, some processes eventually make decisions.

8



Total Correctness
•  is accessible in a system  if  is reachable from an initial configuration  in . C′ P C′ C P

• A run is admissible if  process is faulty and all messages sent to non-faulty 
processes are eventually delivered. 

≤ 1

• A system  is total correct in spite of one fault ifP

Termination: in any admissible run, some processes eventually make decisions.

Agreement: in any accessible configuration, all decided processes agree.

8



Total Correctness
•  is accessible in a system  if  is reachable from an initial configuration  in . C′ P C′ C P

• A run is admissible if  process is faulty and all messages sent to non-faulty 
processes are eventually delivered. 

≤ 1

• A system  is total correct in spite of one fault ifP

Termination: in any admissible run, some processes eventually make decisions.

Agreement: in any accessible configuration, all decided processes agree.

Non-trivial: For , exists an accessible configuration in  that agrees on . i ∈ {0,1} P i

8



9



9

Initial configuration C

Runs



9

After infinite steps 

Initial configuration C

Runs



9

died dec ? dec ? dec ?

After infinite steps 

Initial configuration C

Runs



9

died dec ? dec ? dec ?

Violates Termination
After infinite steps 

Initial configuration C

Runs



Initial configuration C

10

Runs



Initial configuration C

10

died dec 1 dec 0 dec ?

Runs



Initial configuration C

10

died dec 1 dec 0 dec ?

Violates AgreementRuns



Initial configuration C

11

died dec 1 dec 1
died dec 0 dec 0

All runs



Initial configuration C

11

died dec 1 dec 1
died dec 0 dec 0

All runs



Initial configuration C

12

died dec 1 dec 1

All runs

died dec 1 dec 1



Initial configuration C

12

died dec 1 dec 1

Violates Non-TrivialityAll runs

died dec 1 dec 1



The Impossibility Result

13



The Impossibility Result

• Theorem. No consensus system is totally correct in spite of one fault in 
asynchronous system: 


• Messages maybe delayed arbitrarily and delivered out of order.


• Processes do not have access to synchronized clocks. 


• Processes cannot detect the death of others. 
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• Claim 1. There exists a bivalent initial configuration  in . C P

• Claim 2. Given a bivalent configuration  and a step  that is applicable to 
, there is a schedule  that applies  in the last step and keeps the 

configuration  bivalent.

C e
C σ e

σ(C)

• Claim 1 and Claim 2 implies there is an admissible run in  that stays in 
bivalent configuration, which contradicts with the total correctness. 

P
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