Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, Michael S. Paterson Journal of ACM, 1985

Presented by Jialu Bao on CS 6410, Sept 22. 2022

Review from Last Lecture

Review from Last Lecture

- Consensus problem:
- Agreement: if two processes decide, they must decide the same operation.
- Validity: a process can only decide an operation proposed by some replica.

Review from Last Lecture

- Consensus problem:
- Agreement: if two processes decide, they must decide the same operation.
- Validity: a process can only decide an operation proposed by some replica.
- In an asynchronous system:
- To tolerate f crash failures, we need at least $2 f+1$ processes.
- Paxos meets the $2 f+1$ lower bound.
- To tolerate f byzantine failures, we need at least $3 f+1$ processes.
- We saw a protocol that works with $5 f+1$ processes.

Review from Last Lecture

- Consensus problem: + Termination?
- Agreement: if two processes decide, they must decide the same operation.
- Validity: a process can only decide an operation proposed by some replica.
- In an asynchronous system:
- To tolerate f crash failures, we need at least
? processes.

This Paper

- Consensus problem: + Termination?
- Agreement: if two processes decide, they must decide the same operation.
- Validity: a process can only decide an operation proposed by some replica.
- In an asynchronous system:
- To tolerate f crash failures, we need at least ? processes.

Impossible!

Computation Model

Computation Model

- Every process starts with an initial value in $(0,1)$.

Computation Model

- Every process starts with an initial value in $(0,1)$.

Computation Model

- Every process starts with an initial value in $(0,1)$.

- One process may die (stop entirely) at some point.

Computation Model

- Every process starts with an initial value in $(0,1)$.

- One process may die (stop entirely) at some point.
- A non-faulty process may decide on a value in $(0,1)$.

Computation Model

- Every process starts with an initial value in $(0,1)$.

- One process may die (stop entirely) at some point.
- A non-faulty process may decide on a value in $(0,1)$.

Steps after

init 1
dec ?

P1
P2
P3
P4

Processes
init 0 init 1

A system (or protocol) consists of - a set of initial configurations;

- deterministic transition function t_{i} of each process P_{i}

P1

P2
P3
P4

Processes init 0 init 1 init 0 init 1

Buffer

P1

P2
P3
P4

Processes init 0 init 1 init 0 init 1

Schedule

Processes

Schedule

Processes

Processes

Processes

Buffer

$$
\text { One step }\left\{\begin{array}{c}
m_{3}=\text { Receive }(3) \\
t_{3}\left(P_{3}, m_{3}\right)
\end{array}\right.
$$

Buffer


```
m}\mp@subsup{\mp@code{3}}{=}{=Receive(3)
send( }\mp@subsup{P}{2}{},\mathrm{ init)
send( }\mp@subsup{P}{4}{}\mathrm{ , init)
```

```
m}=\mathrm{ =Receive(3)
send( }\mp@subsup{P}{2}{},\mathrm{ init }
send( }\mp@subsup{P}{4}{\prime},\mathrm{ init)
```

$\left(P_{2}, 0\right)$
$\left(P_{4}, 0\right)$

Total Correctness

Total Correctness

- C^{\prime} is accessible in a system P if C^{\prime} is reachable from an initial configuration C in P.

Total Correctness

- C^{\prime} is accessible in a system P if C^{\prime} is reachable from an initial configuration C in P.
- A run is admissible if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.

Total Correctness

- C^{\prime} is accessible in a system P if C^{\prime} is reachable from an initial configuration C in P.
- A run is admissible if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.
- A system P is total correct in spite of one fault if

Total Correctness

- C^{\prime} is accessible in a system P if C^{\prime} is reachable from an initial configuration C in P.
- A run is admissible if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.
- A system P is total correct in spite of one fault if

Termination: in any admissible run, some processes eventually make decisions.

Total Correctness

- C^{\prime} is accessible in a system P if C^{\prime} is reachable from an initial configuration C in P.
- A run is admissible if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.
- A system P is total correct in spite of one fault if

Termination: in any admissible run, some processes eventually make decisions.
Agreement: in any accessible configuration, all decided processes agree.

Total Correctness

- C^{\prime} is accessible in a system P if C^{\prime} is reachable from an initial configuration C in P.
- A run is admissible if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.
- A system P is total correct in spite of one fault if

Termination: in any admissible run, some processes eventually make decisions.
Agreement: in any accessible configuration, all decided processes agree.
Non-trivial: For $i \in\{0,1\}$, exists an accessible configuration in P that agrees on i.

The Impossibility Result

The Impossibility Result

- Theorem. No consensus system is totally correct in spite of one fault in asynchronous system:
- Messages maybe delayed arbitrarily and delivered out of order.
- Processes do not have access to synchronized clocks.
- Processes cannot detect the death of others.

Terminology

Terminology

- Let V_{C} be the set of decision values of configurations reachable from C.

Terminology

- Let V_{C} be the set of decision values of configurations reachable from C.
- Say that C is bivalent if $\left|V_{C}\right|=2$.

Terminology

- Let V_{C} be the set of decision values of configurations reachable from C.
- Say that C is bivalent if $\left|V_{C}\right|=2$.
- C is univalent if $\left|V_{C}\right|=1$.

Terminology

- Let V_{C} be the set of decision values of configurations reachable from C.
- Say that C is bivalent if $\left|V_{C}\right|=2$.
- C is univalent if $\left|V_{C}\right|=1$.
- In particular, C is i-valent if $V_{C}=\{i\}$.

C_{1} is bivalent assume Agreement.

Initial configuration C_{1}

Initial configuration C_{2}

All runs dec 0 died dec ?

dec? died dec ?
C_{1} is bivalent assume Agreement.

Initial configuration C_{1}

Initial configuration C_{2}

All runs dec 0 died dec?

\section*{| died | dec 1 | dec 1 |
| :--- | :--- | :--- |} dec 1

dec? died dec?
C_{1} is bivalent assume Agreement.
C_{2} is not 0-valent.

Terminology

Terminology

Bivalent
0-valent

1-valent

Terminology

1-valent

Terminology

Terminology

Proof Sketch

Proof Sketch

- Proof by contradiction:

Proof Sketch

- Proof by contradiction:
- Assume P is a totally correct in spite of one fault. Then we can prove:

Proof Sketch

- Proof by contradiction:
- Assume P is a totally correct in spite of one fault. Then we can prove:
- Claim 1. There exists a bivalent initial configuration C in P.

Proof Sketch

- Proof by contradiction:
- Assume P is a totally correct in spite of one fault. Then we can prove:
- Claim 1. There exists a bivalent initial configuration C in P.
- Claim 2. Given a bivalent configuration C and a step e that is applicable to C, there is a schedule σ that applies e in the last step and keeps the configuration $\sigma(C)$ bivalent.

Proof Sketch

- Proof by contradiction:
- Assume P is a totally correct in spite of one fault. Then we can prove:
- Claim 1. There exists a bivalent initial configuration C in P.
- Claim 2. Given a bivalent configuration C and a step e that is applicable to C, there is a schedule σ that applies e in the last step and keeps the configuration $\sigma(C)$ bivalent.
- Claim 1 and Claim 2 implies there is an admissible run in P that stays in bivalent configuration, which contradicts with the total correctness.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.

- Assume not. Then by Non-triviality, the set of initial configurations in P contains:

Claim 1

There exists a bivalent initial configuration in P.

- Assume not. Then by Non-triviality, the set of initial configurations in P contains:

Claim 1

There exists a bivalent initial configuration in P.

- Assume not. Then by Non-triviality, the set of initial configurations in P contains:

Claim 1

There exists a bivalent initial configuration in P.

- Assume not. Then by Non-triviality, the set of initial configurations in P contains:

- Definition: Two initial configurations are adjacent if they only differ in one process.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.
Any two configurations can be connected by a chain of adjacent configurations.

Claim 1

There exists a bivalent initial configuration in P.

Adjacent
 $\mathbf{0}$-valent C_{0}

 Adjacent

Claim 1

There exists a bivalent initial configuration in P.

Adjacent
 0-valent C_{0}

 Adjacent

There exists adjacent C, C^{\prime} in the chain connecting C_{0}, C_{1} such that C is 0 -valent, C^{\prime} is 1 -valent.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.

Claim 1

There exists a bivalent initial configuration in P.

Both agree on 1 contradiction with

Claim 1

There exists a bivalent initial configuration in P.

Both agree on 1 contradiction with

Both agree on 0 contradiction with
1-valent initial C^{\prime}

P 1 is never scheduled.

These two runs should be the same: either both agree on 1, or both agree on 0 .

Claim 2

There exists a schedule that preserves bivalence.

Claim 2

There exists a schedule that preserves bivalence.

Lemma 1.

Claim 2

There exists a schedule that preserves bivalence.

Lemma 1.
If schedule σ_{1} and σ_{2} are both applicable to the configuration C and the set of processes stepped in σ_{1} and σ_{2} are disjoint,

Claim 2

There exists a schedule that preserves bivalence.

Lemma 1.
If schedule σ_{1} and σ_{2} are both applicable to the configuration C and the set of processes stepped in σ_{1} and σ_{2} are disjoint, then $\sigma_{1} ; \sigma_{2}$ and $\sigma_{2} ; \sigma_{1}$ are also applicable to C and they are equivalent.

Claim 2

There exists a schedule that preserves bivalence.

Claim 2

There exists a schedule that preserves bivalence.

Claim 2

There exists a schedule that preserves bivalence.

Lemma 2.

Claim 2

There exists a schedule that preserves bivalence.

Lemma 2.
If Claim 2 does not hold,

Claim 2

There exists a schedule that preserves bivalence.

Lemma 2.

If Claim 2 does not hold,
then there exists a bivalent C and two steps e, e^{\prime} operating on the same process p such that

Claim 2

There exists a schedule that preserves bivalence.

Lemma 2.

If Claim $\mathbf{2}$ does not hold,
then there exists a bivalent C and two steps e, e^{\prime} operating on the same process p such that

- $e(C)$ is a i-valent configuration.

Claim 2

There exists a schedule that preserves bivalence.

Lemma 2.

If Claim 2 does not hold,
then there exists a bivalent C and two steps e, e^{\prime} operating on the same process p such that
$-e(C)$ is a i-valent configuration.

- $e\left(e^{\prime}(C)\right)$ is an $(1-i)$-valent configuration.

Claim 2

There exists a schedule that preserves bivalence.

Lemma 2.

If Claim 2 does not hold,
then there exists a bivalent C and two steps e, e^{\prime} operating on the same process p such that
$-e(C)$ is a i-valent configuration.

- $e\left(e^{\prime}(C)\right)$ is an $(1-i)$-valent configuration.

Claim 2

There exists a schedule that preserves bivalence.

Lemma 2.
If Claim 2 does not hold,
then there exists a bivalent C and two steps e, e^{\prime} operating on the same process p such that
$-e(C)$ is a i-valent configuration.

- $e\left(e^{\prime}(C)\right)$ is an $(1-i)$-valent configuration.

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Let \mathscr{E} be the set of configurations reachable from C without applying e. Let $\mathscr{D}=e(\mathscr{E})$.

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Let \mathscr{E} be the set of configurations reachable from C without applying e. Let $\mathscr{D}=e(\mathscr{E})$.

Bivalent C

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Let \mathscr{E} be the set of configurations reachable from C without applying e. Let $\mathscr{D}=e(\mathscr{C})$.

- If there exists a bivalent configuration C^{\prime} in \mathscr{D}, then Claim 2 holds. Contradiction to the assumption! So there exists i-valent E_{i}.

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Let \mathscr{E} be the set of configurations reachable from C without applying e. Let $\mathscr{D}=e(\mathscr{E})$.

- If there exists a bivalent configuration C^{\prime} in \mathscr{D}, then Claim 2 holds. Contradiction to the assumption! So there exists i-valent E_{i}.

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Let \mathscr{E} be the set of configurations reachable from C without applying e. Let $\mathscr{D}=e(\mathscr{E})$.

- If there exists a bivalent configuration C^{\prime} in \mathscr{D}, then Claim 2 holds. Contradiction to the assumption! So there exists i-valent E_{i}.

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Skip some steps ... we can prove that there exists

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Skip some steps ... we can prove that there exists

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Skip some steps ... we can prove that there exists

- If e and e^{\prime} operate on different processors, then we can prove $\left(e ; e^{\prime}\right)\left(C_{0}\right)=\left(e^{\prime} ; e\right)\left(C_{0}\right)$, which implies $D_{0}=D_{1}$. Impossible!

Claim 2 (Proof for Lemma 2)

There exists a schedule that preserves bivalence.

- Skip some steps ... we can prove that there exists

- If e and e^{\prime} operate on different processors, then we can prove $\left(e ; e^{\prime}\right)\left(C_{0}\right)=\left(e^{\prime} ; e\right)\left(C_{0}\right)$, which implies $D_{0}=D_{1}$. Impossible!
- Lemma 2 proved!

Claim 2

There exists a schedule that preserves bivalence.

Claim 2

There exists a schedule that preserves bivalence.

Proof by Contradiction (again):

Claim 2

There exists a schedule that preserves bivalence.

Proof by Contradiction (again):
Assume Claim 2 is not true, then by Lemma 2, there exists a bivalent C and two steps e, e^{\prime} as depicted in the diagram and e and e^{\prime} both operate on a process p.

Claim 2

There exists a schedule that preserves bivalence.

Proof by Contradiction (again):
Assume Claim 2 is not true, then by Lemma 2, there exists a bivalent C and two steps e, e^{\prime} as depicted in the diagram and e and e^{\prime} both operate on a process p.

Claim 2

There exists a schedule that preserves bivalence.

Claim 2

There exists a schedule that preserves bivalence.

There exists schedule σ that leads C to a consensus A without stepping p.

Claim 2

There exists a schedule that preserves bivalence.

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C))=e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.

Claim 2

There exists a schedule that preserves bivalence.

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C))=e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.

Claim 2

There exists a schedule that preserves bivalence.

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C))=e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.

Similarly, $\sigma\left(e\left(e^{\prime}(C)\right)\right)=e\left(e^{\prime}(\sigma(C))\right)$, so $e\left(e^{\prime}(\sigma(C))\right)$ has to be 0 -valent.

Claim 2

There exists a schedule that preserves bivalence.

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C))=e(\sigma(C))$, so $e(\sigma(C))$ has to be 1 -valent.

Similarly, $\sigma\left(e\left(e^{\prime}(C)\right)\right)=e\left(e^{\prime}(\sigma(C))\right)$, so $e\left(e^{\prime}(\sigma(C))\right)$ has to be 0 -valent.

Claim 2

There exists a schedule that preserves bivalence.

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C))=e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.

Similarly, $\sigma\left(e\left(e^{\prime}(C)\right)\right)=e\left(e^{\prime}(\sigma(C))\right)$, so $e\left(e^{\prime}(\sigma(C))\right)$ has to be 0 -valent.

Claim 2

There exists a schedule that preserves bivalence.

Claim 2

There exists a schedule that preserves bivalence.

$e(\sigma(C))$ has to be 1-valent implies
$A=\sigma(C)$ cannot be 0 -valent.

Claim 2

There exists a schedule that preserves bivalence.

Claim 2

There exists a schedule that preserves bivalence.

Claim 2

There exists a schedule that preserves bivalence.

Discussion

Review the Proof

Discussion

Review the Proof

-Where did the proof use the condition that one process might be faulty?

Discussion

Review the Proof

-Where did the proof use the condition that one process might be faulty?

- Are there other implicit assumptions of the set of initial configurations in P ?

Discussion

What are remedies for this impossibility results?

Discussion

What are remedies for this impossibility results?

- The authors considered a case where faulty processes are all dead from the beginning and prove that there exists a system that satisfy partial correctness (Agreement and Non-triviality).

Discussion

What are remedies for this impossibility results?

- The authors considered a case where faulty processes are all dead from the beginning and prove that there exists a system that satisfy partial correctness (Agreement and Non-triviality).
- What relaxations of the adversarial environment are effective?
- Is a totally correct protocol possible if the message is delivered in order?

Discussion

What are remedies for this impossibility results?

- The authors considered a case where faulty processes are all dead from the beginning and prove that there exists a system that satisfy partial correctness (Agreement and Non-triviality).
- What relaxations of the adversarial environment are effective?
- Is a totally correct protocol possible if the message is delivered in order?
- What enhancements of the processes would be effective?
- Is a totally correct protocol possible if the processes can detect the faulty process?

