Impossibility of **Distributed Consensus with One Faulty Process** Michael J. Fischer, Nancy A. Lynch, Michael S. Paterson Journal of ACM, 1985

Presented by Jialu Bao on CS 6410, Sept 22. 2022

- Consensus problem:

• Agreement: if two processes decide, they must decide the same operation. • Validity: a process can only decide an operation proposed by some replica.

- Consensus problem:
 - Agreement: if two processes decide, they must decide the same operation. • Validity: a process can only decide an operation proposed by some replica.
- In an asynchronous system:
 - To tolerate f crash failures, we need at least 2f + 1 processes.
 - Paxos meets the 2f + 1 lower bound.
 - To tolerate f byzantine failures, we need at least 3f + 1 processes.
 - We saw a protocol that works with 5f + 1 processes.

- Consensus problem: + Termination?
 - Agreement: if two processes decide, they must decide the same operation.
 - Validity: a process can only decide an operation proposed by some replica.
- In an asynchronous system:
 - To tolerate f crash failures, we need at least ?

processes.

This Paper

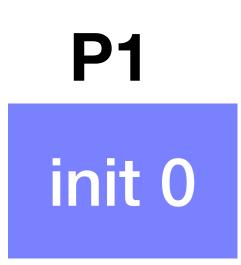
- Consensus problem: + Termination?
 - Agreement: if two processes decide, they must decide the same operation. • Validity: a process can only decide an operation proposed by some replica.
- In an asynchronous system:
 - To tolerate f crash failures, we need at least ?

Impossible!

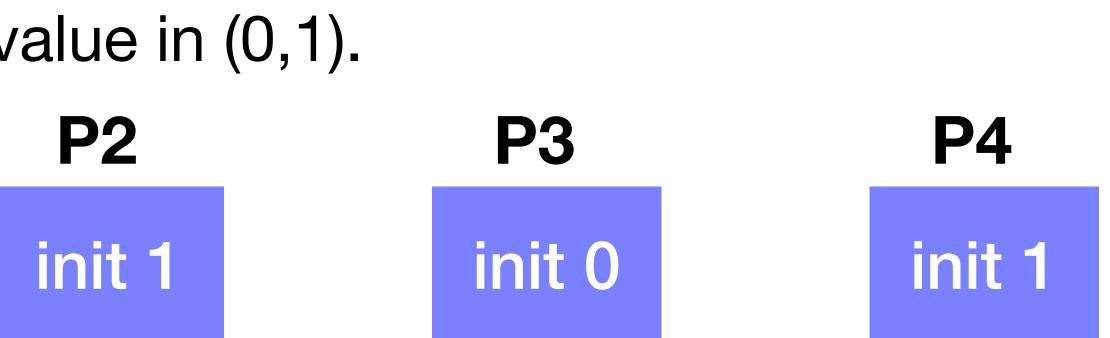
processes.

• Every process starts with an initial value in (0,1).

• Every process starts with an initial value in (0,1).



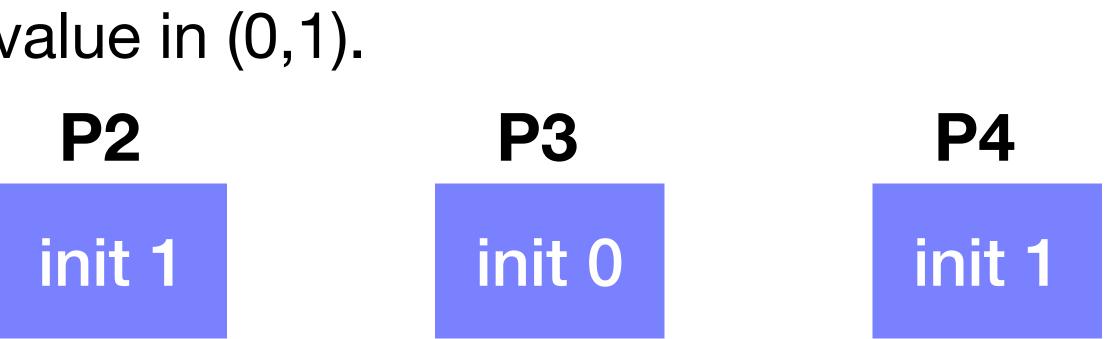
Processes



• Every process starts with an initial value in (0,1).



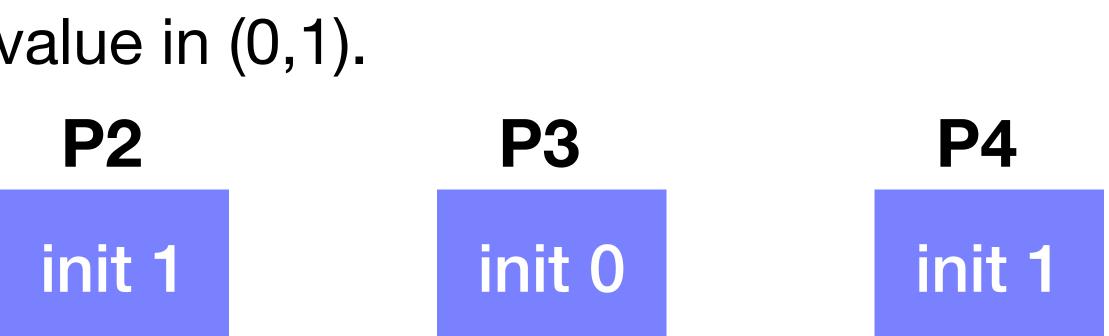
• One process may die (stop entirely) at some point.



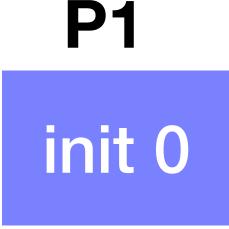
• Every process starts with an initial value in (0,1).

Processes

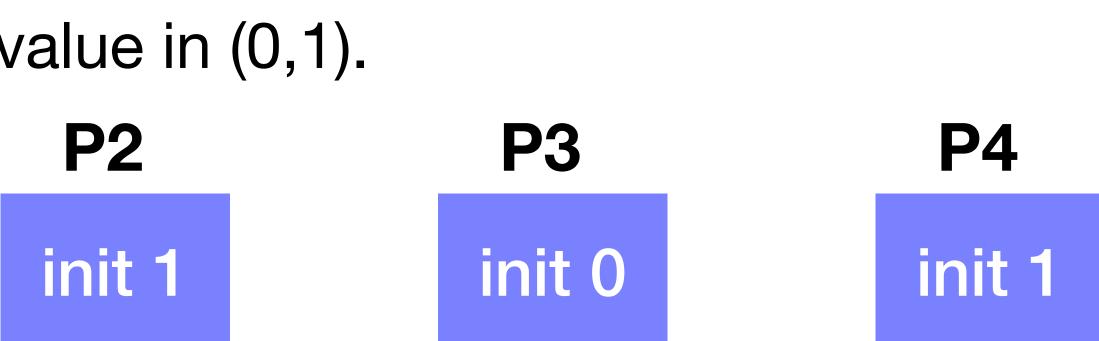
- One process may die (stop entirely) at some point.
- A non-faulty process may decide on a value in (0, 1).



• Every process starts with an initial value in (0,1).



- One process may die (stop entirely) at some point.
- A non-faulty process may decide on a value in (0, 1).

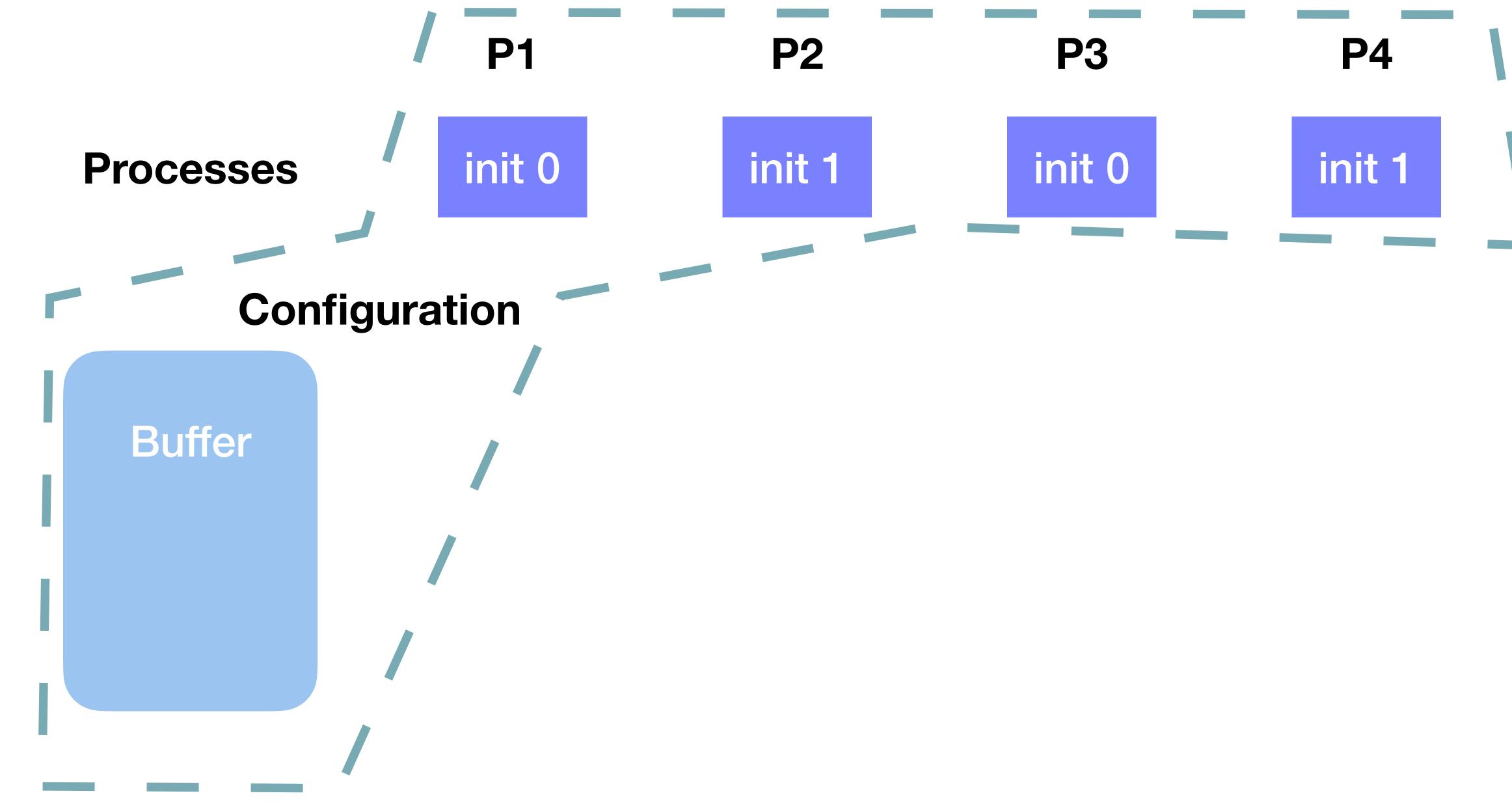


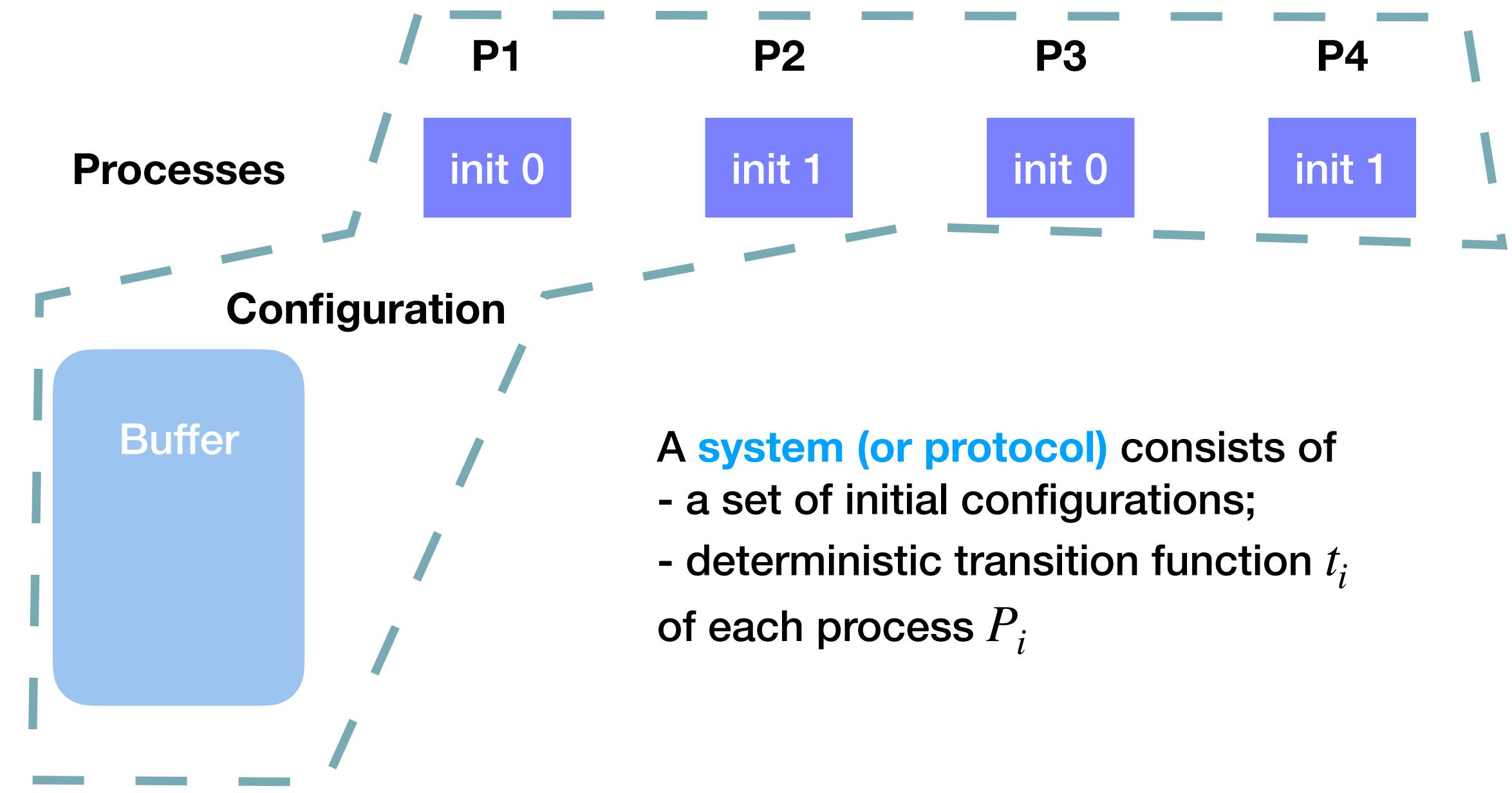
init 1 dec 1 init 0 dec 1

init 1 dec ?

Processes

init 0





Processes

Buffer

init 0

Processes

Buffer

Schedule

init 0

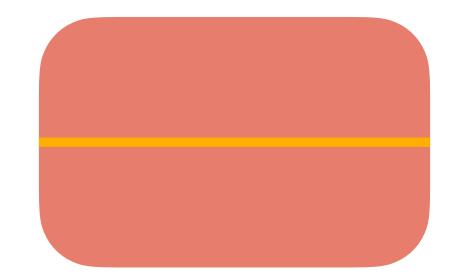
Processes

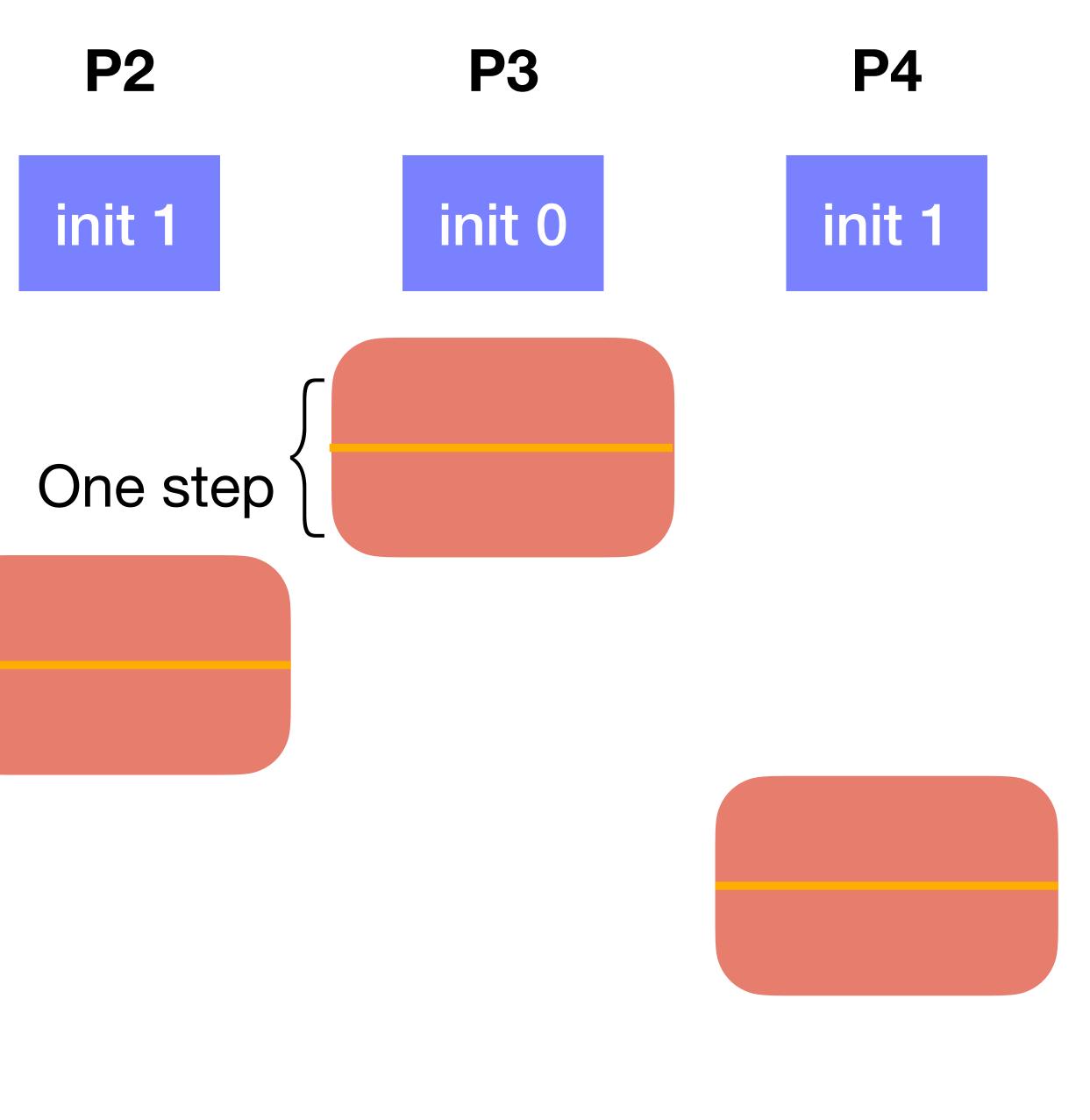
Buffer

Schedule

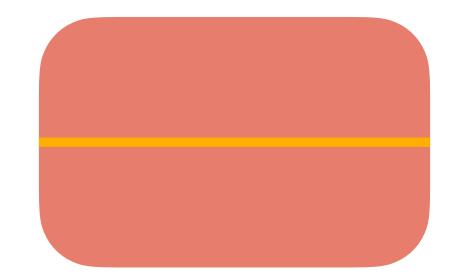
P2	P3	P4	
init 1	init 0	init 1	

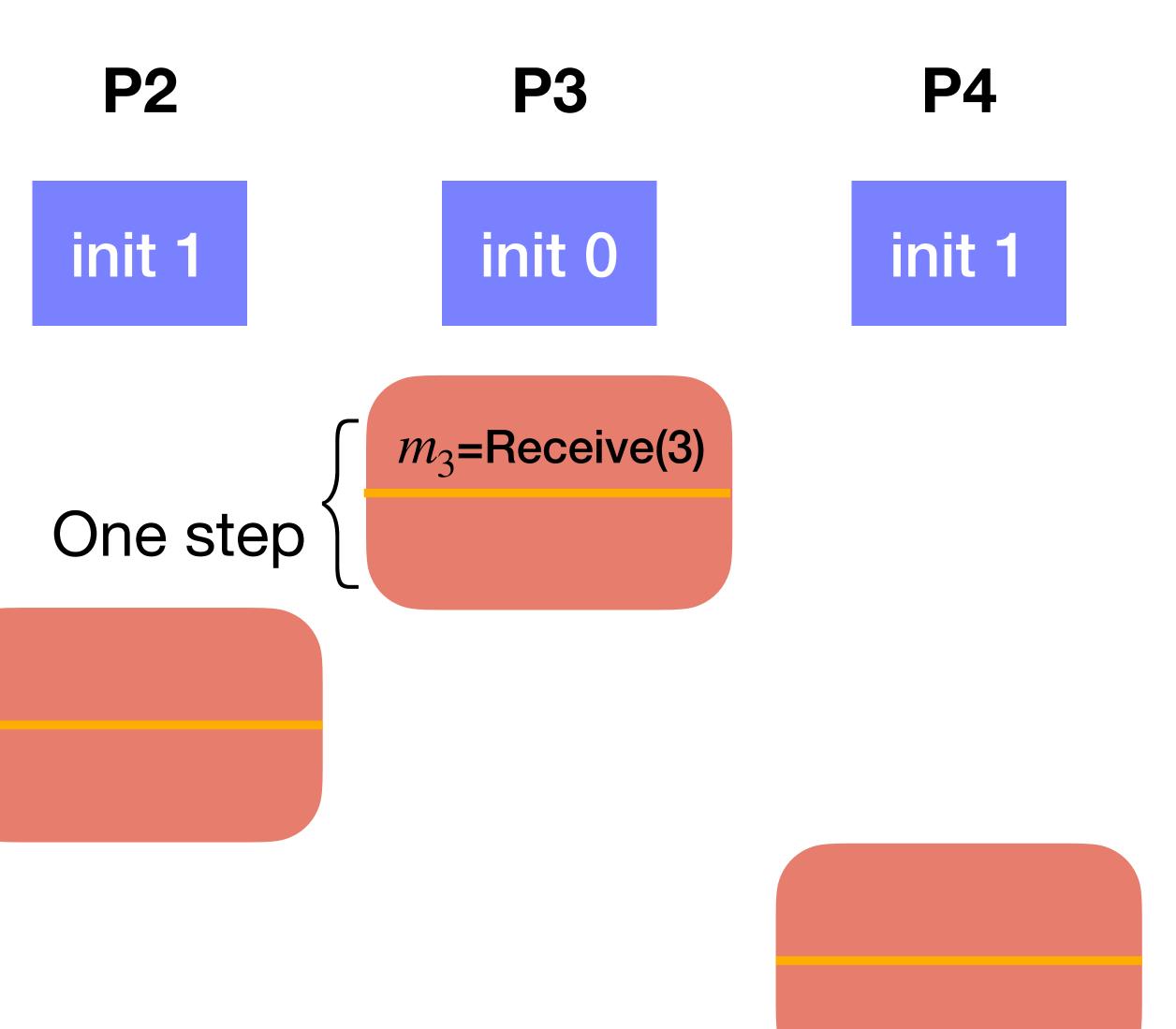
Processes



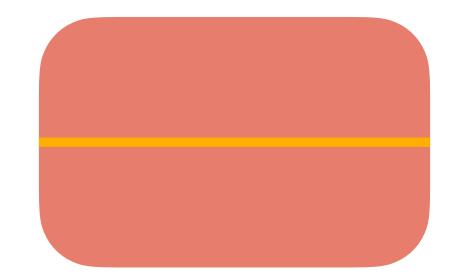


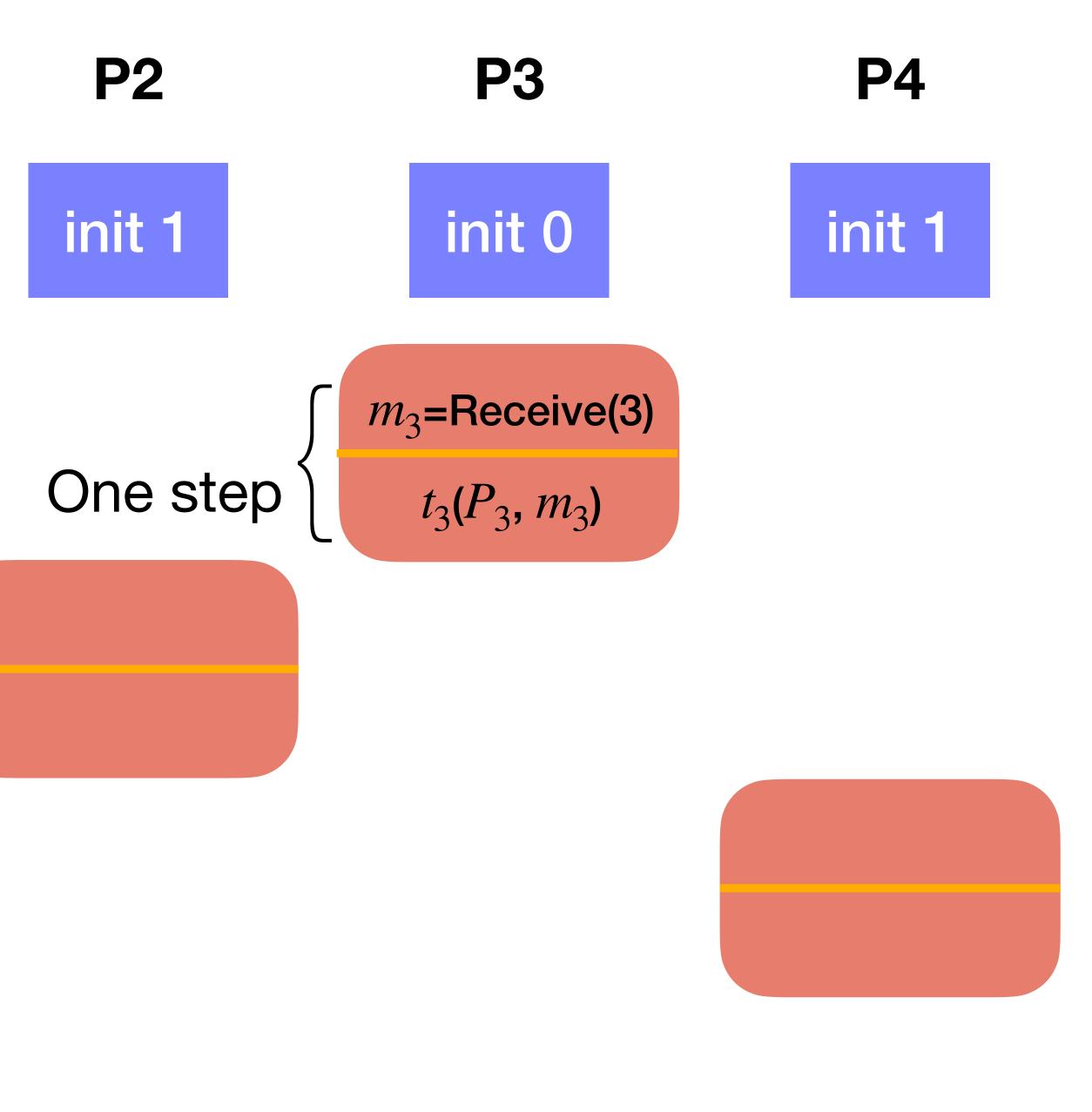
Processes



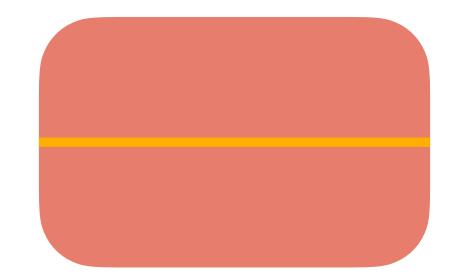


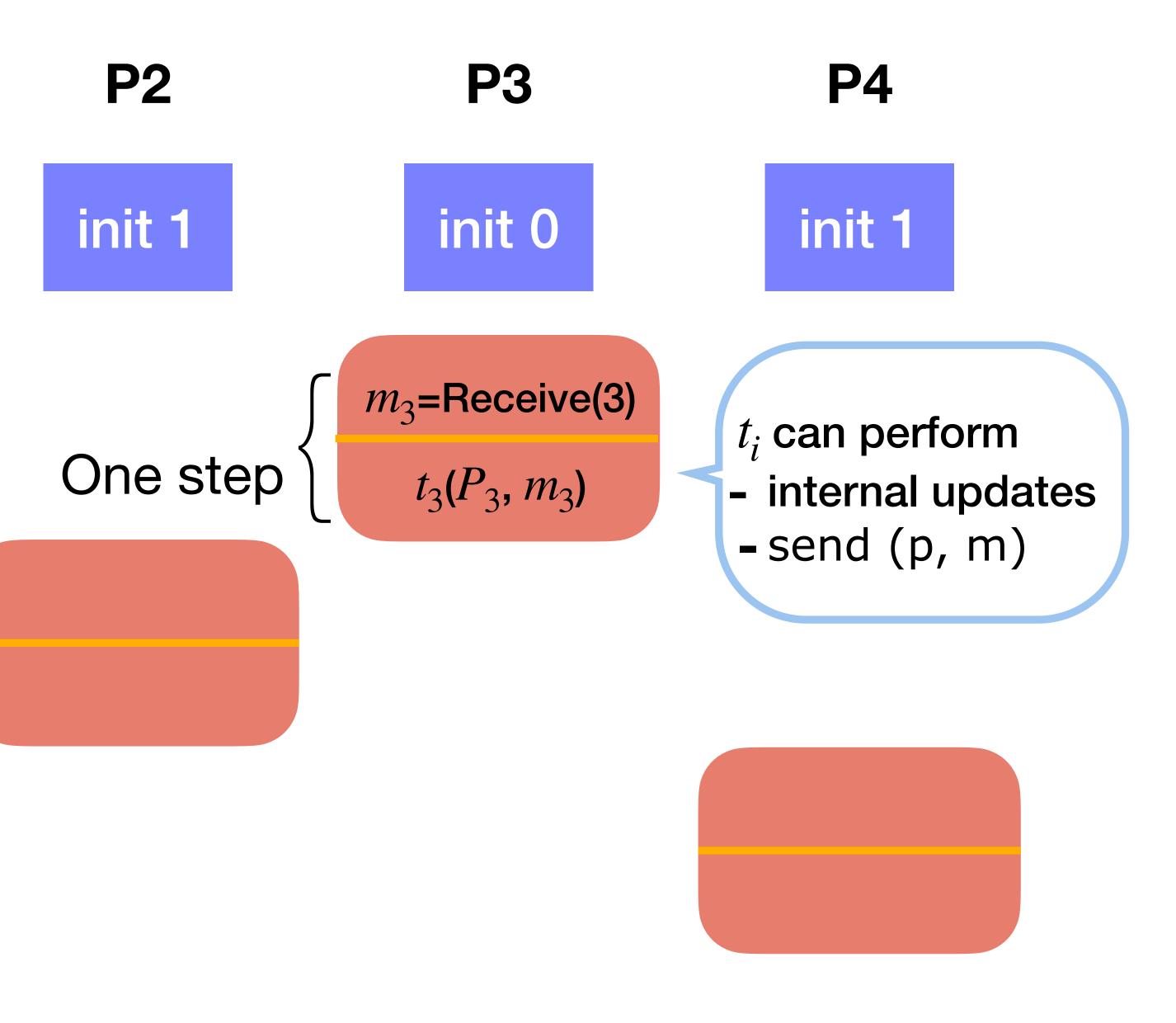
Processes



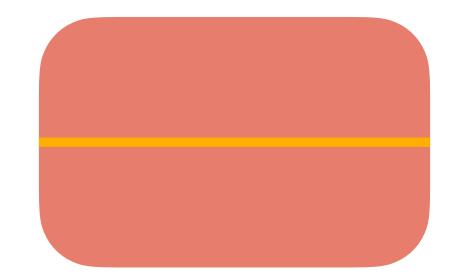


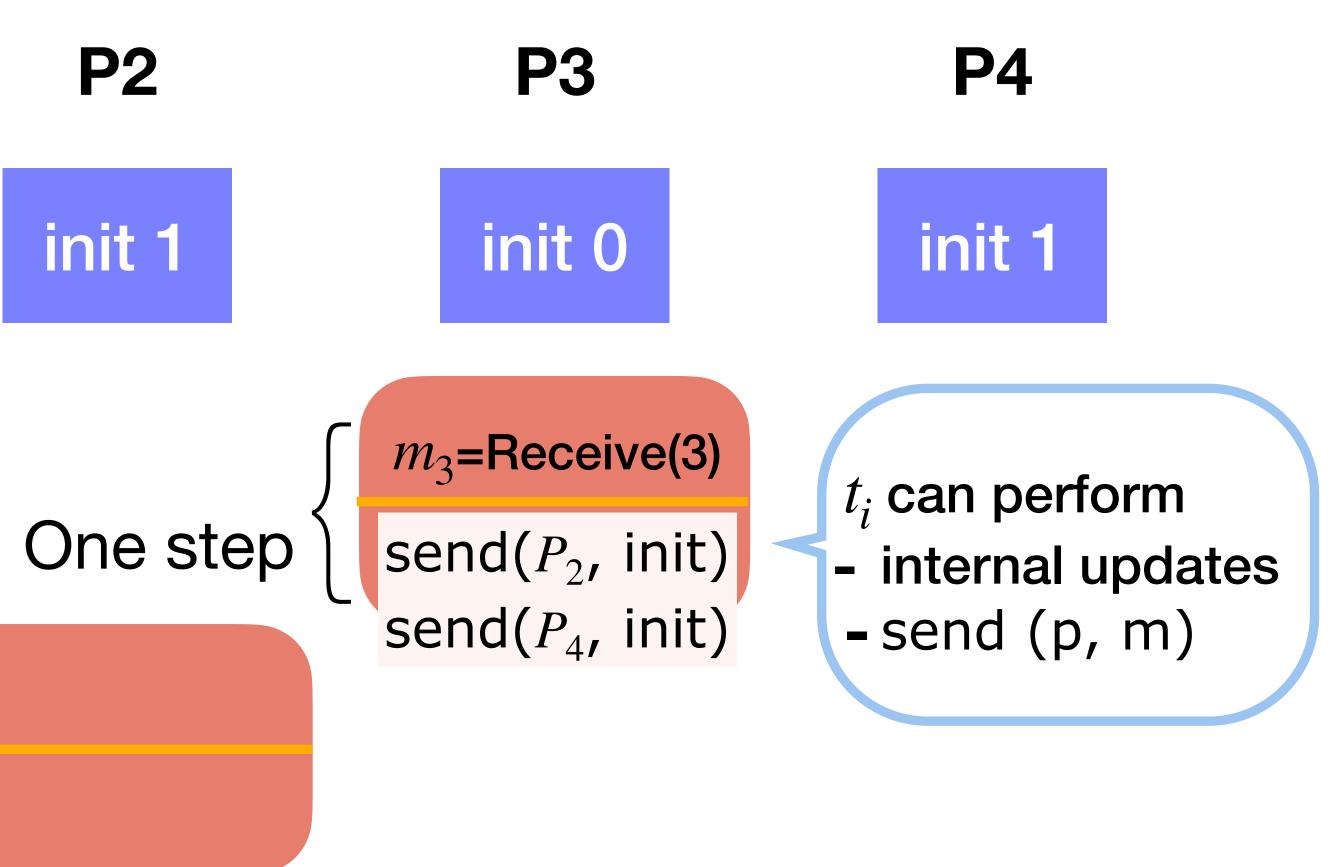
Processes





Processes

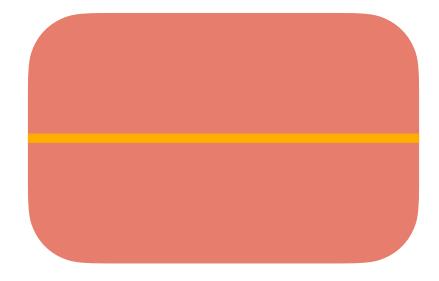


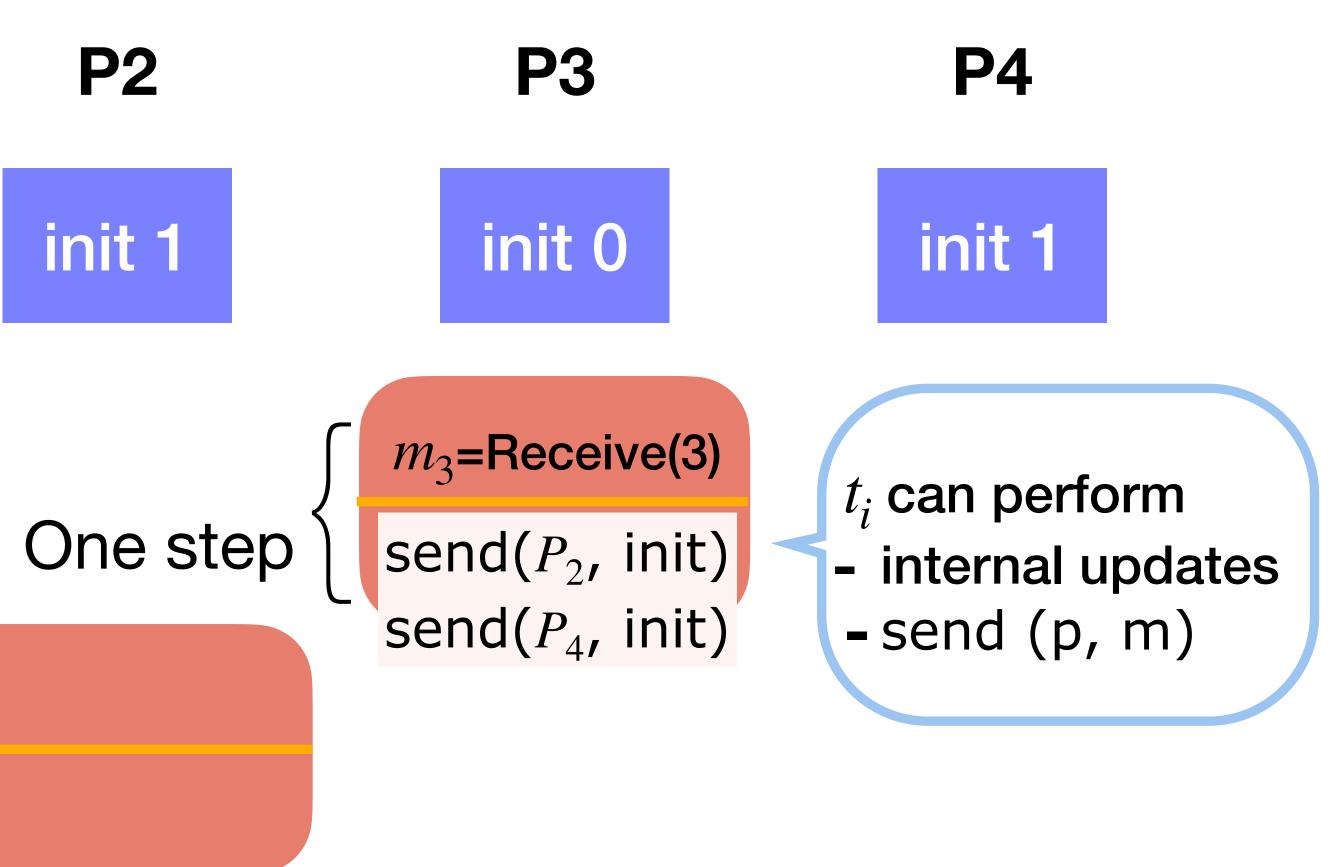


Processes

Buffer (*P*₂, 0) (*P*₄, 0)

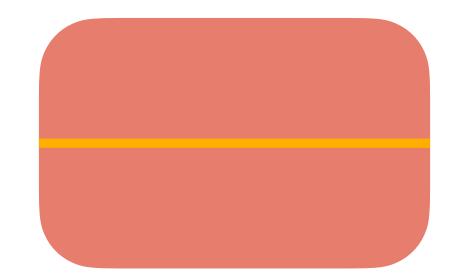
send (p, m) achieved by putting (p, m) in buffer



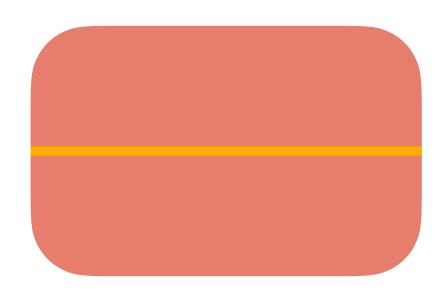


Processes

Buffer (*P*₂, 0) (*P*₄, 0)



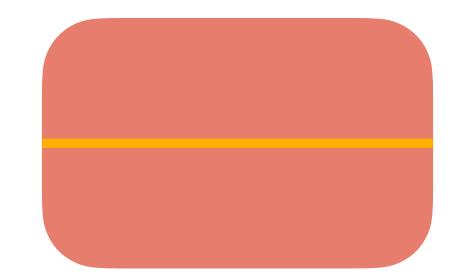
P2	P3
init 1	init O
	m_3 =Receive(3)
	<pre>send(P₂, init) send(P₄, init)</pre>

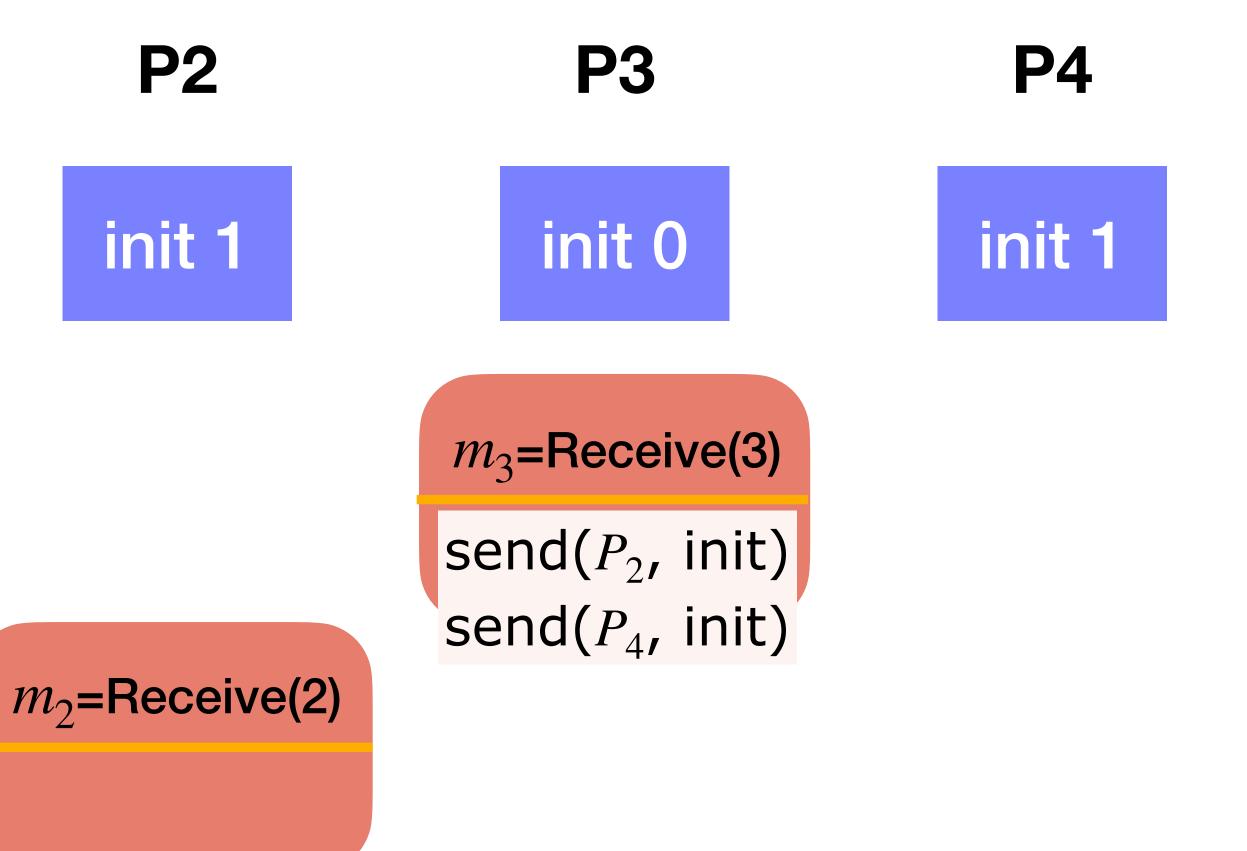


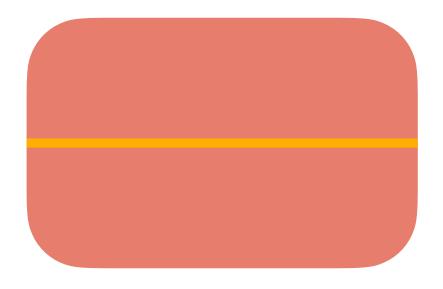
P4

Processes

Buffer (*P*₂, 0) (P₄, 0)







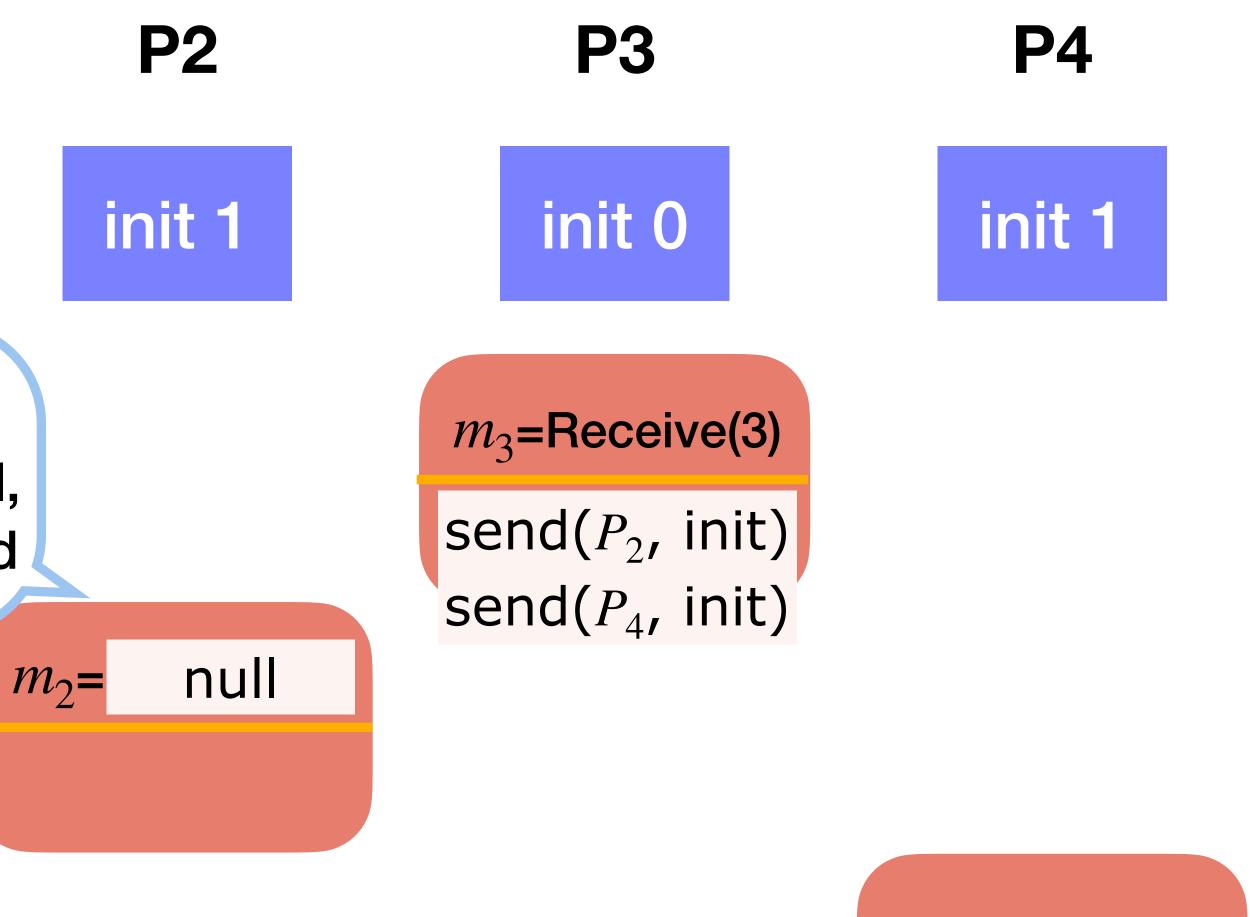
Processes

init 0

Buffer (*P*₂, 0) (*P*₄, 0)

Message delayed: Receive(*i*) returns null, and buffer unchanged



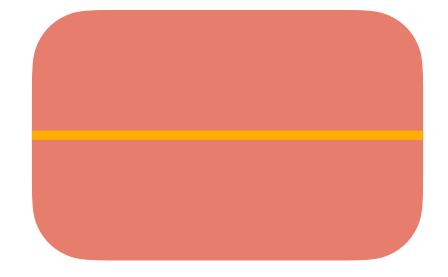


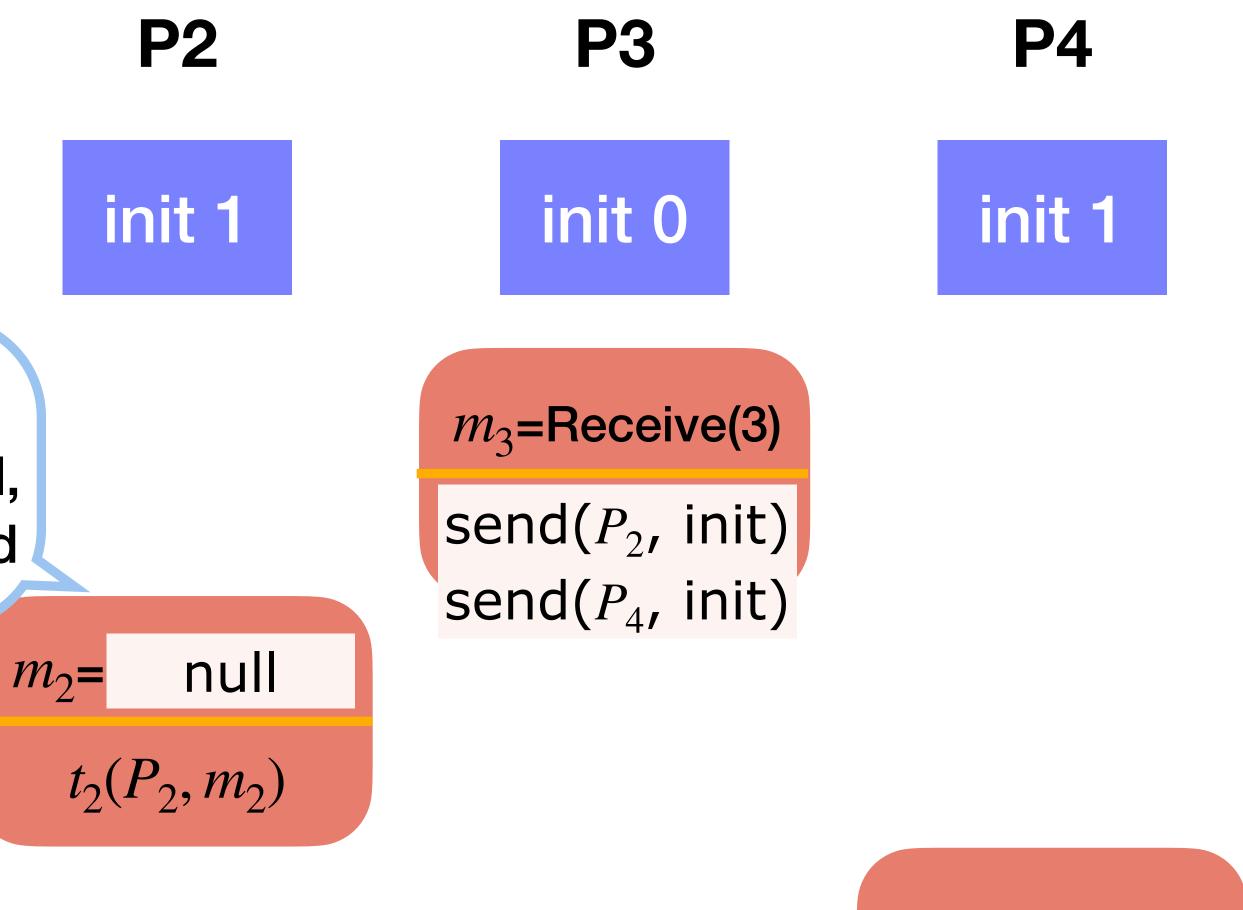
Processes

init 0

Buffer (*P*₂, 0) (*P*₄, 0)

Message delayed: Receive(*i*) returns null, and buffer unchanged





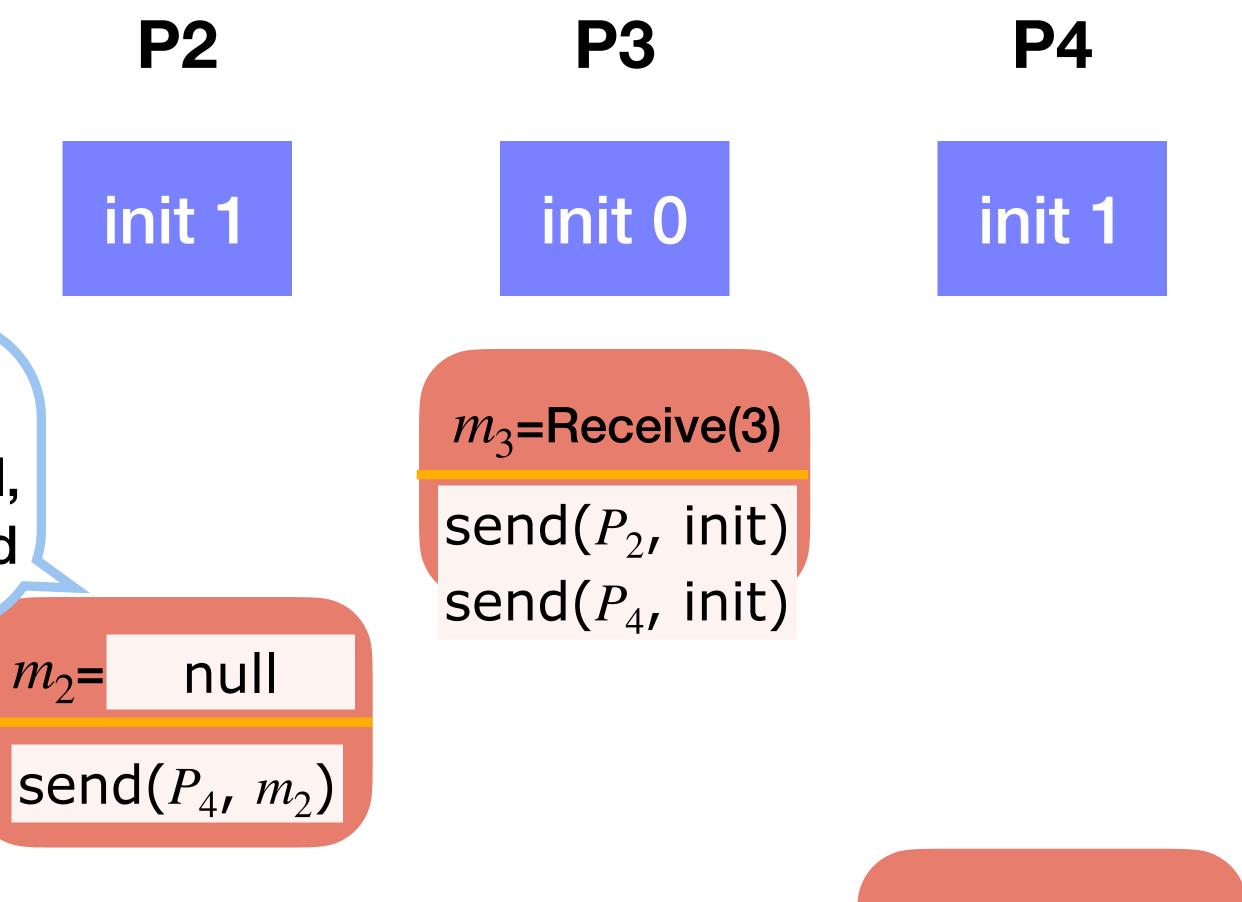


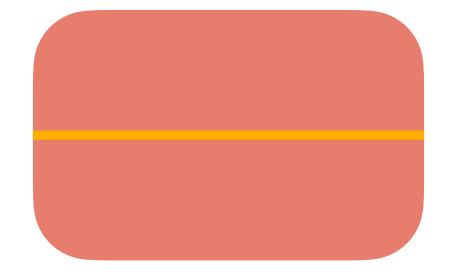
Processes

init 0

Buffer (*P*₂, 0) (*P*₄, 0)

Message delayed: Receive(*i*) returns null, and buffer unchanged



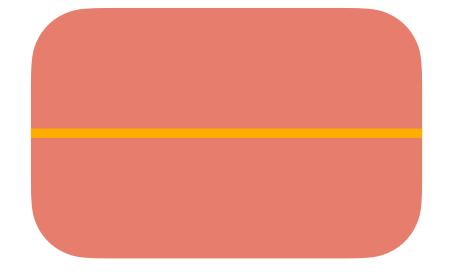


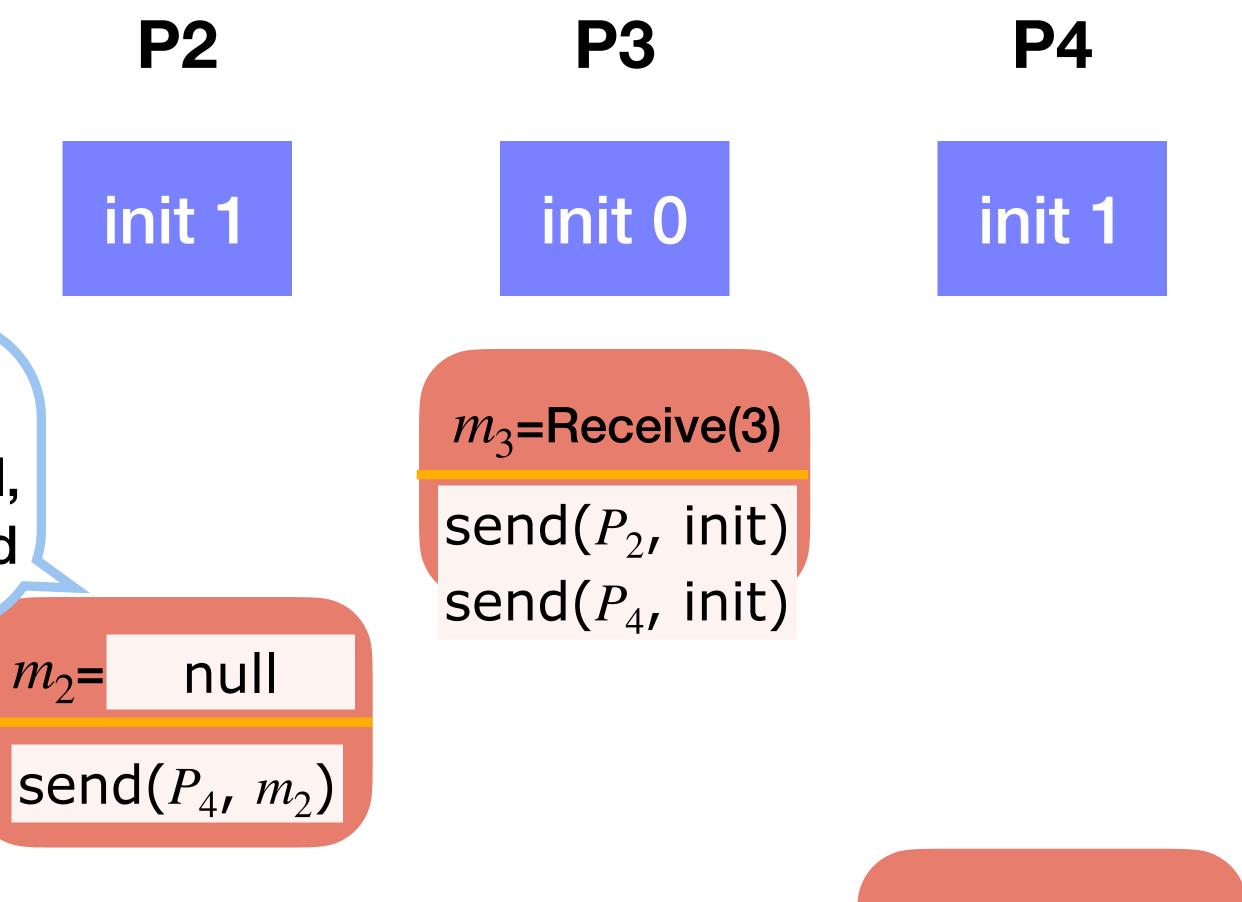
Processes

init 0

Buffer (*P*₂, 0) (*P*₄, 0) (P_4, null)

Message delayed: Receive(*i*) returns null, and buffer unchanged



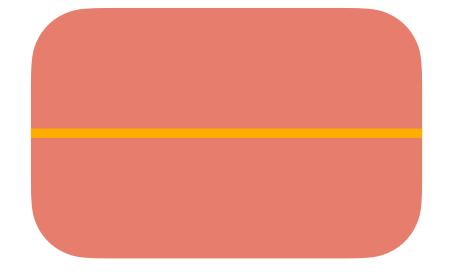


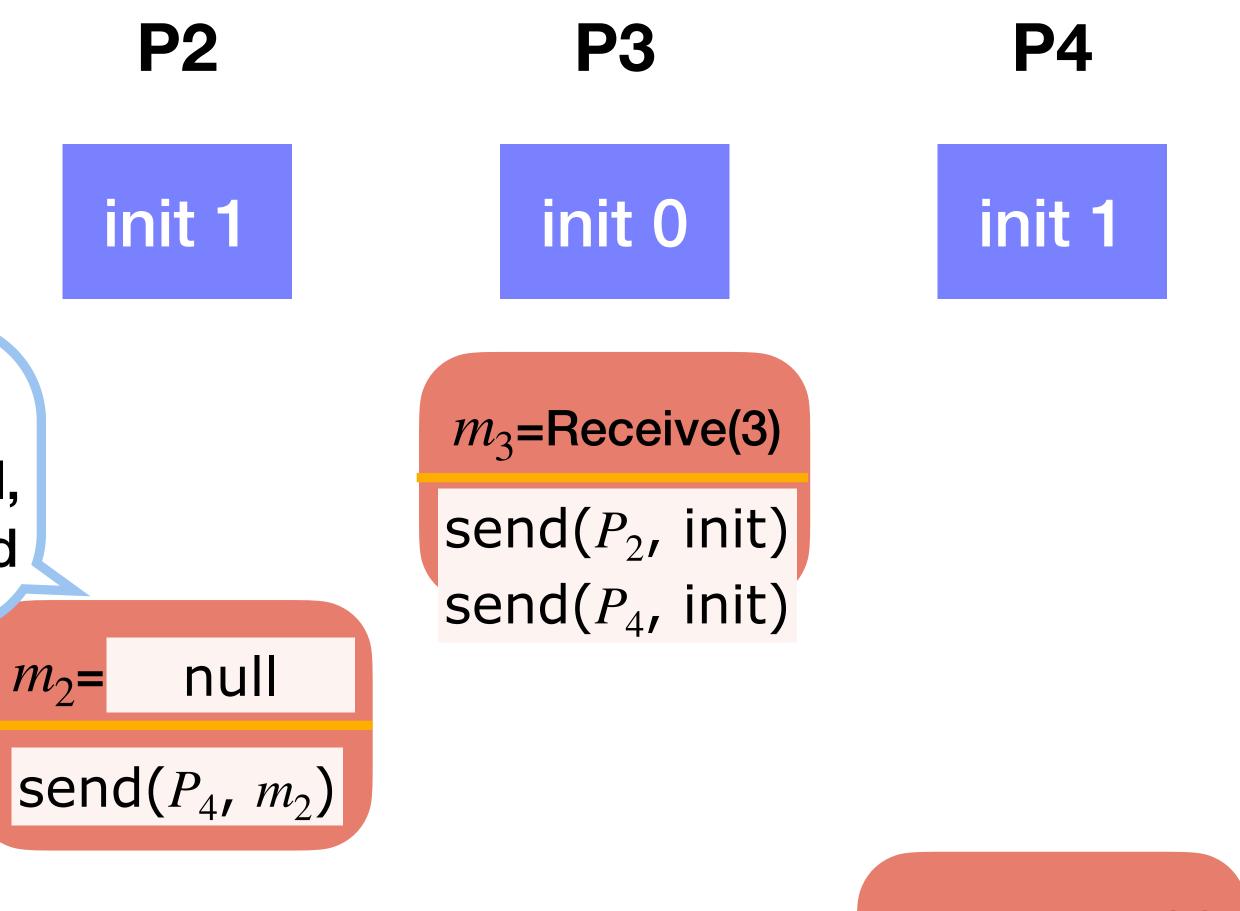
Processes

init 0

Buffer (*P*₂, 0) (*P*₄, 0) (P_4, null)

Message delayed: Receive(*i*) returns null, and buffer unchanged



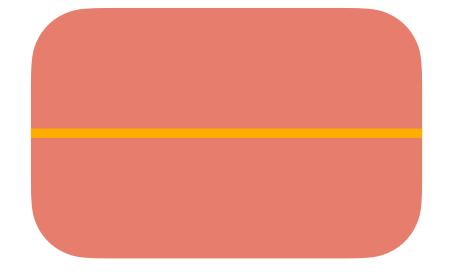


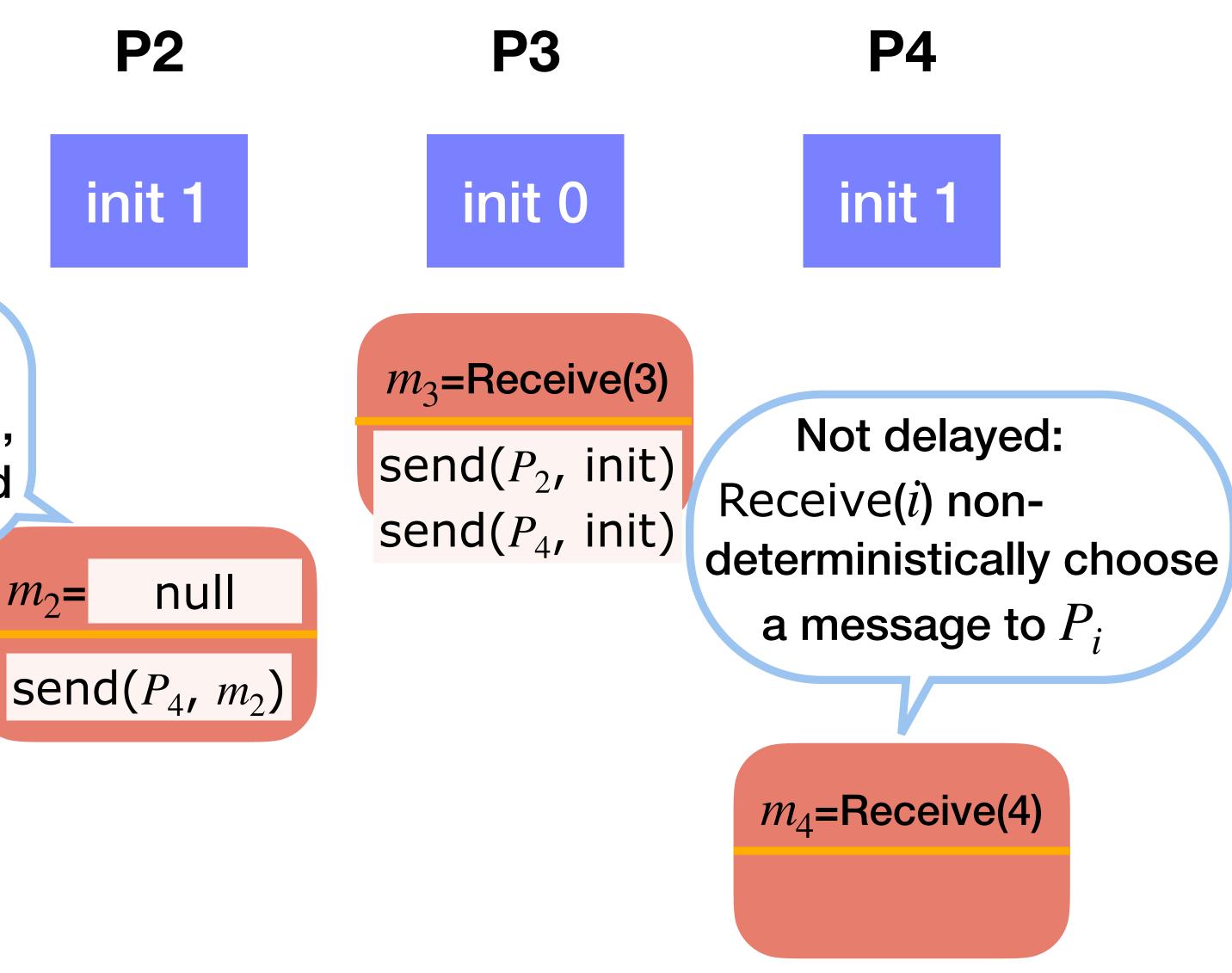
Processes

init 0

Buffer (*P*₂, 0) (*P*₄, 0) (P_4, null)

Message delayed: Receive(*i*) returns null, and buffer unchanged





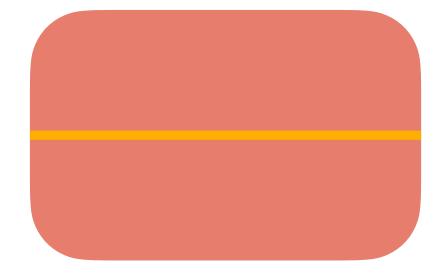
Processes

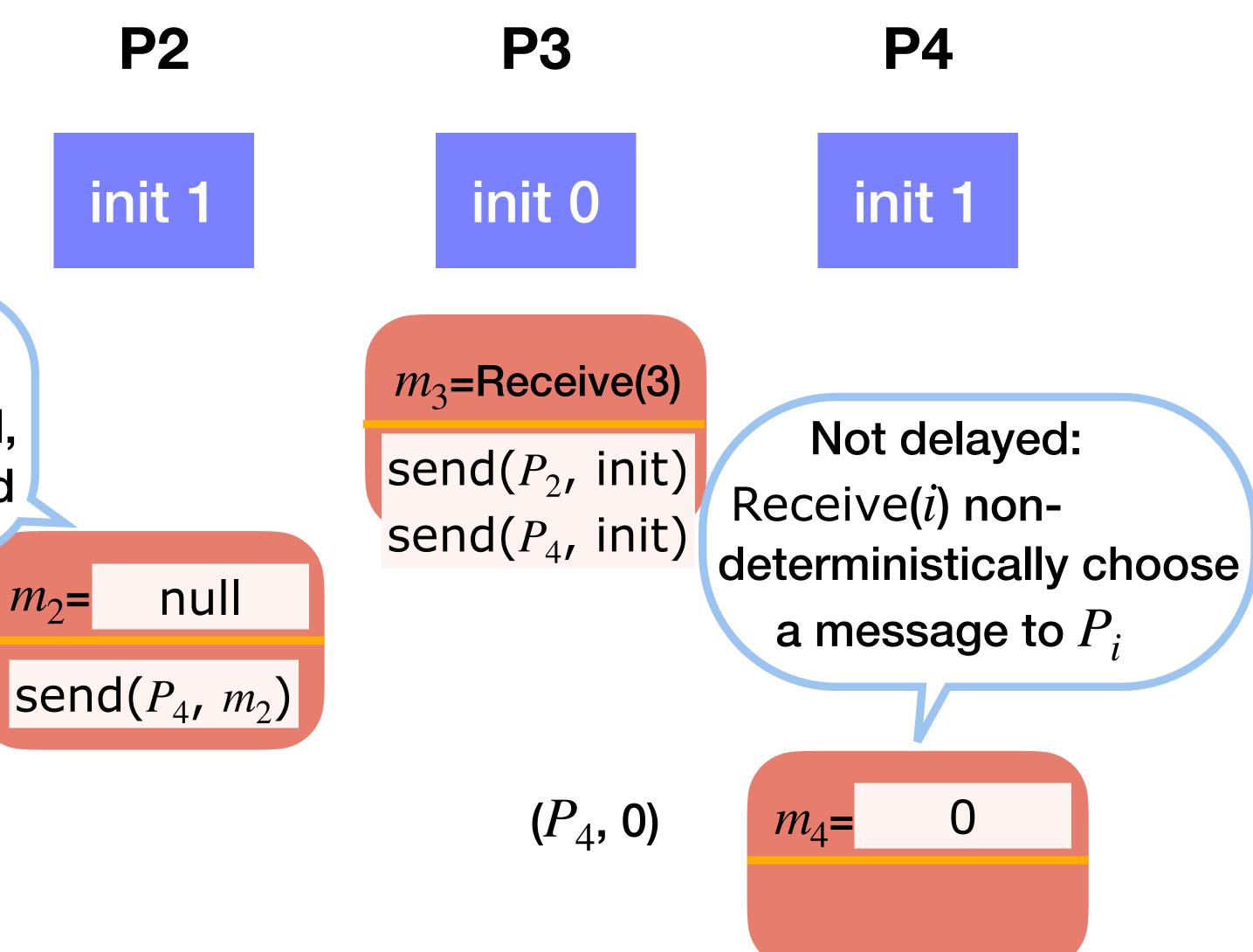
init 0

Buffer (*P*₂, 0)

(P_4, null)

Message delayed: Receive(*i*) returns null, and buffer unchanged





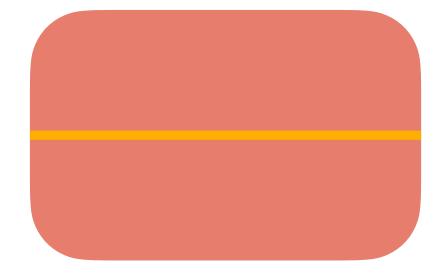
Processes

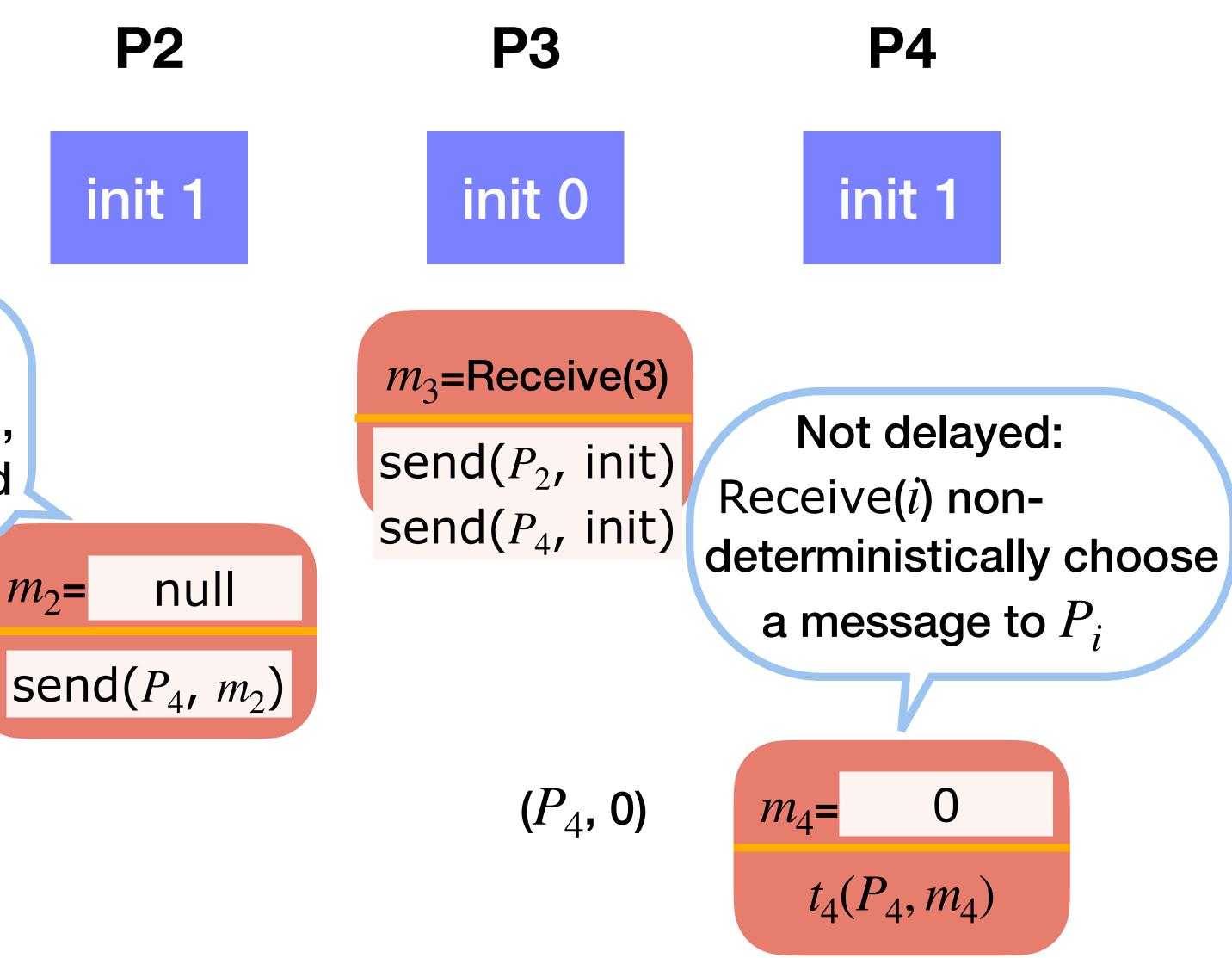
init 0

Buffer (*P*₂, 0)

(P_4, null)

Message delayed: Receive(*i*) returns null, and buffer unchanged





Processes

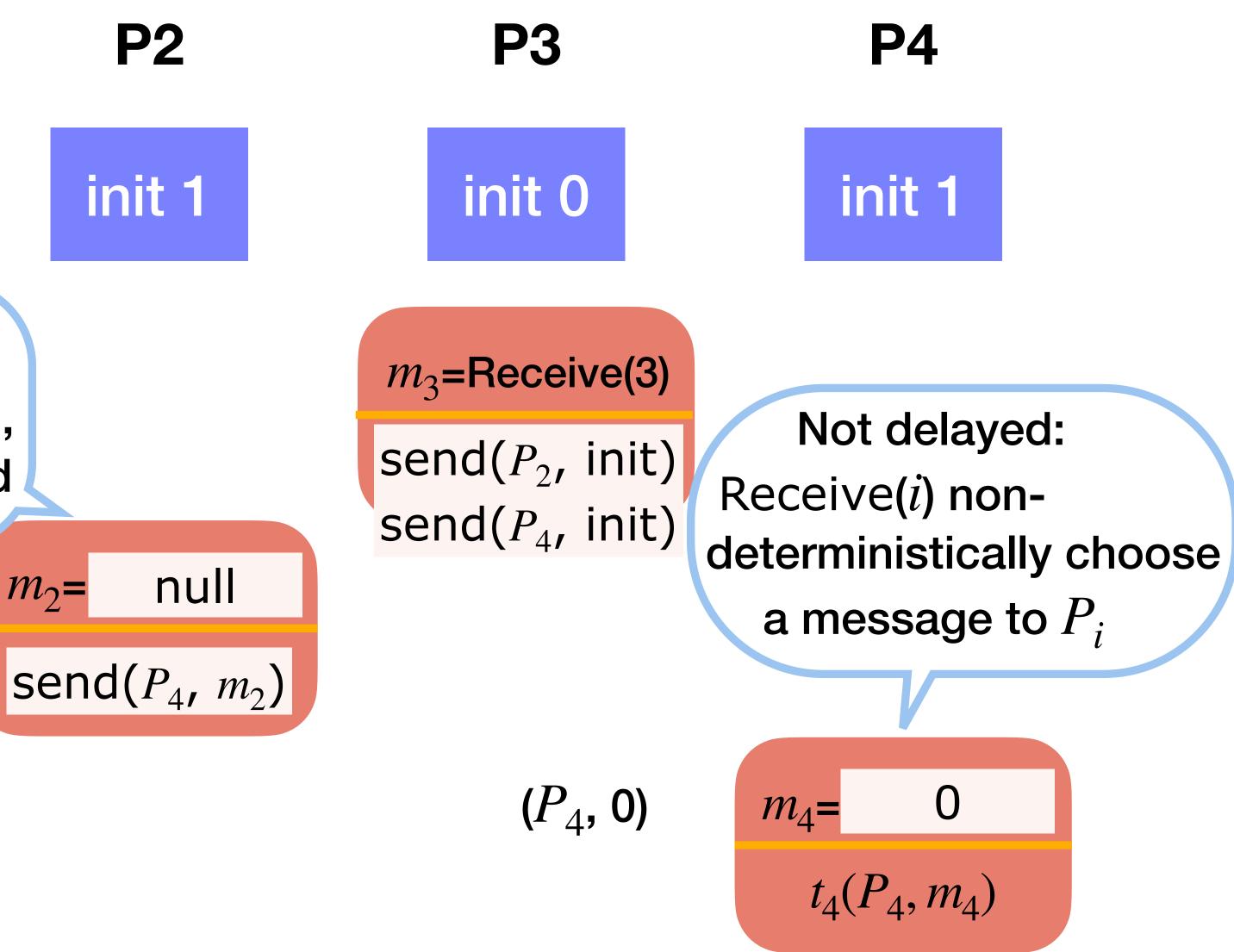
init 0

Buffer (*P*₂, 0)

(P_4, null)

Message delayed: Receive(*i*) returns null, and buffer unchanged

 m_1 =Receive(1)



P1

Processes

init 0

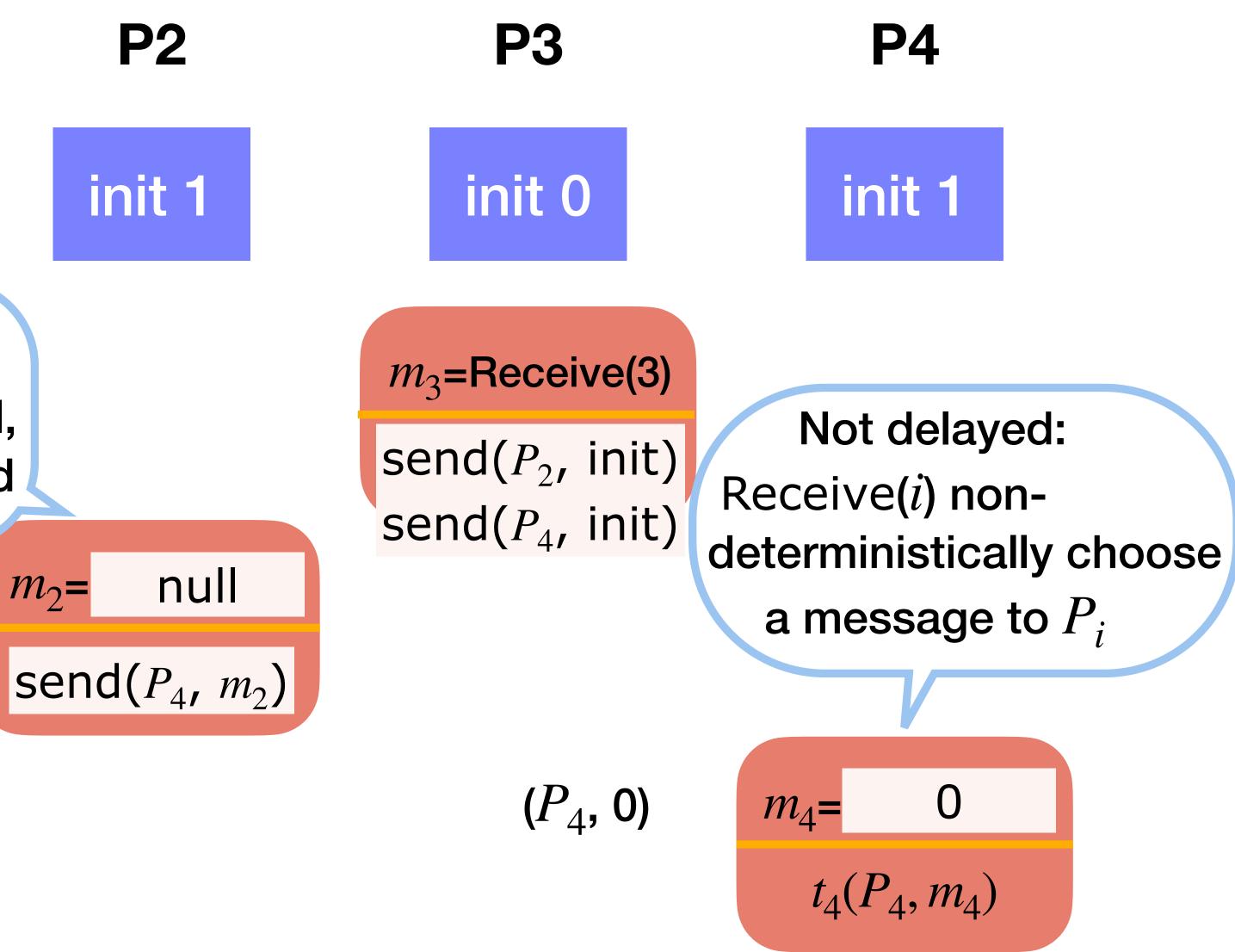
Buffer (*P*₂, 0)

(P_4, null)

Message delayed: Receive(*i*) returns null, and buffer unchanged

 m_1 =Receive(1)

 $t_1(P_1, m_1)$



P1

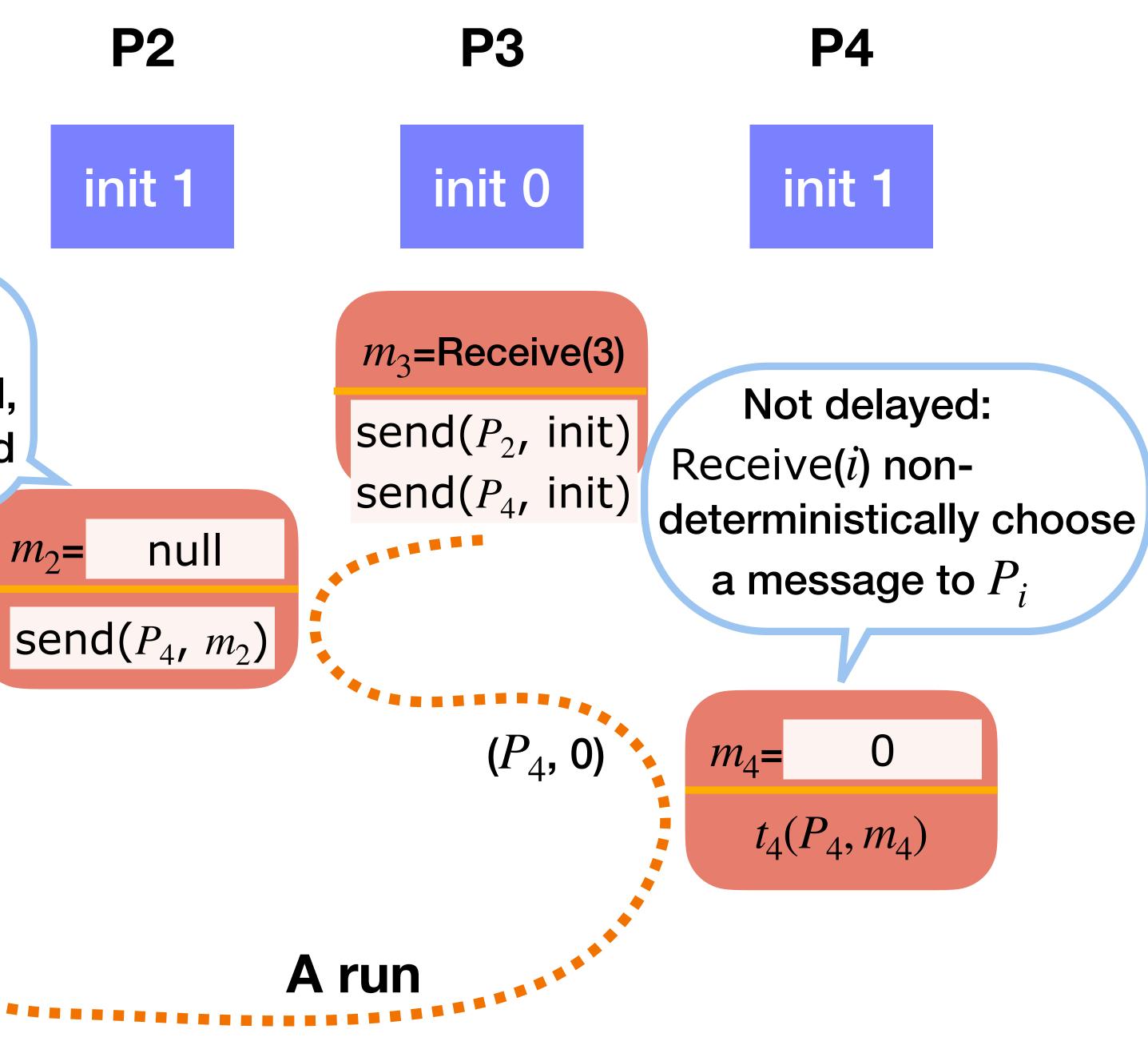
Processes

init 0

Buffer $(P_2, 0)$

(P_4, null)

Message delayed: Receive(*i*) returns null, and buffer unchanged



m_1 =Receive(1)

 $t_1(P_1, m_1)$

• C' is accessible in a system P if C' is reachable from an initial configuration C in P.

- processes are eventually delivered.

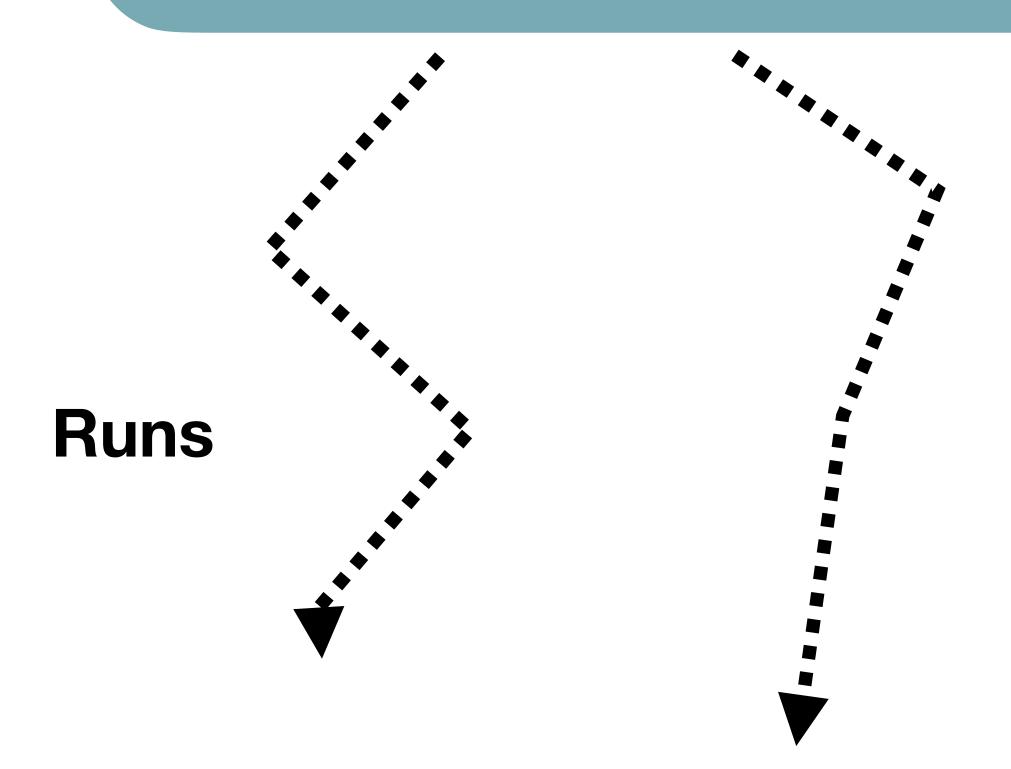
• C' is accessible in a system P if C' is reachable from an initial configuration C in P. • A run is **admissible** if ≤ 1 process is faulty and all messages sent to non-faulty

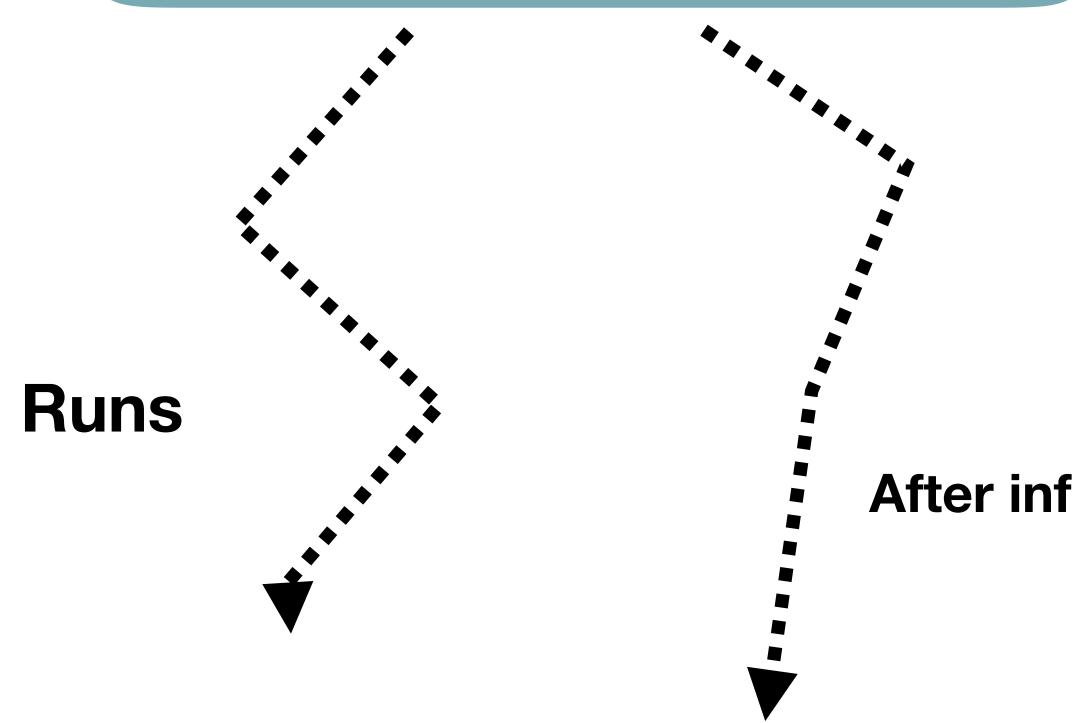
- C' is accessible in a system P if C' is reachable from an initial configuration C in P.
- A run is admissible if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.
- A system P is total correct in spite of one fault if

- C' is accessible in a system P if C' is reachable from an initial configuration C in P.
- A run is admissible if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.
- A system *P* is total correct in spite of one fault if
 Termination: in any admissible run, some processes eventually make decisions.

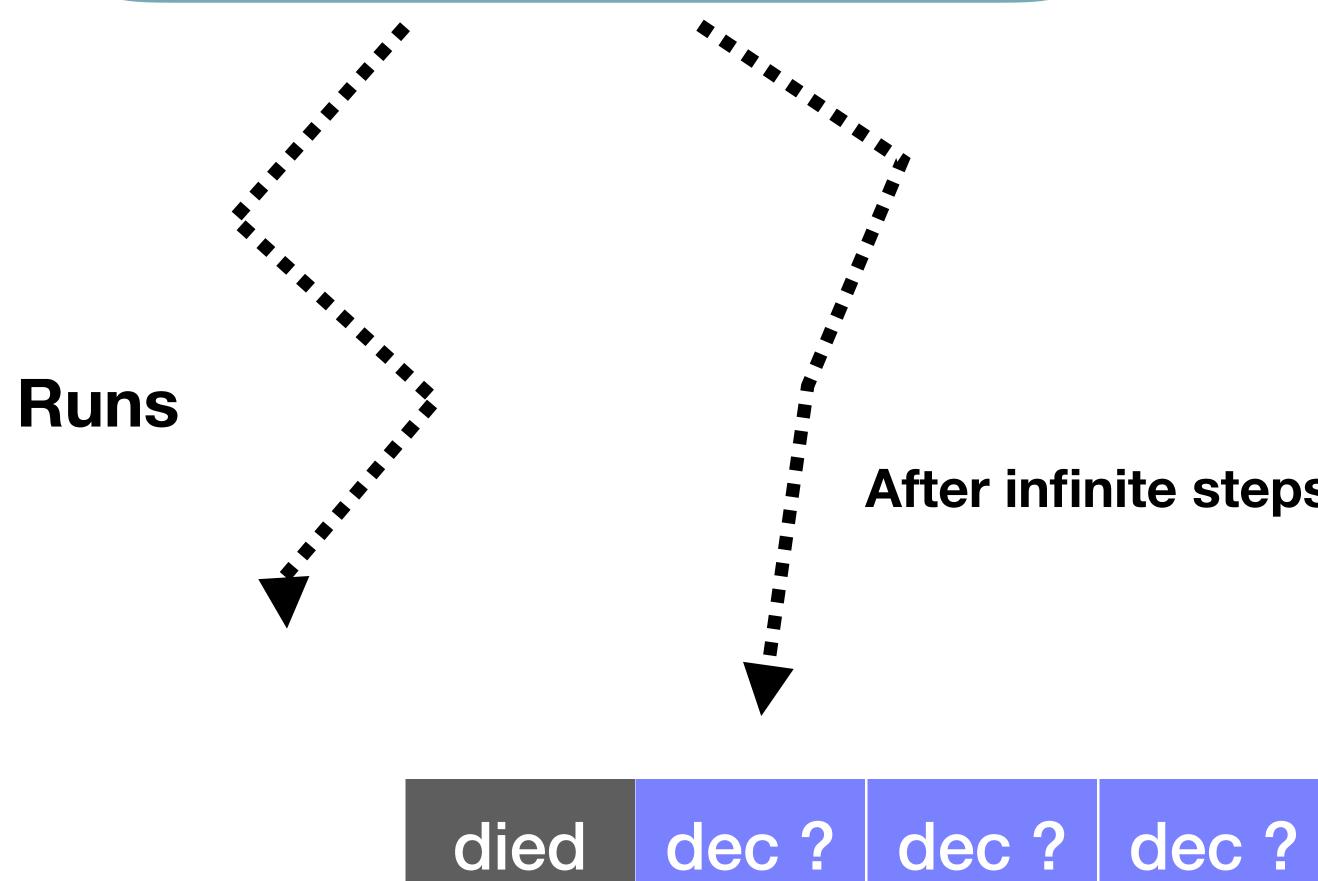
- C' is accessible in a system P if C' is reachable from an initial configuration C in P.
- A run is **admissible** if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.
- A system P is total correct in spite of one fault if **Termination:** in any admissible run, some processes eventually make decisions.
 - Agreement: in any accessible configuration, all decided processes agree.

- C' is accessible in a system P if C' is reachable from an initial configuration C in P.
- A run is **admissible** if ≤ 1 process is faulty and all messages sent to non-faulty processes are eventually delivered.
- A system *P* is total correct in spite of one fault if **Termination:** in any admissible run, some processes eventually make decisions. Agreement: in any accessible configuration, all decided processes agree. **Non-trivial**: For $i \in \{0,1\}$, exists an accessible configuration in P that agrees on i.

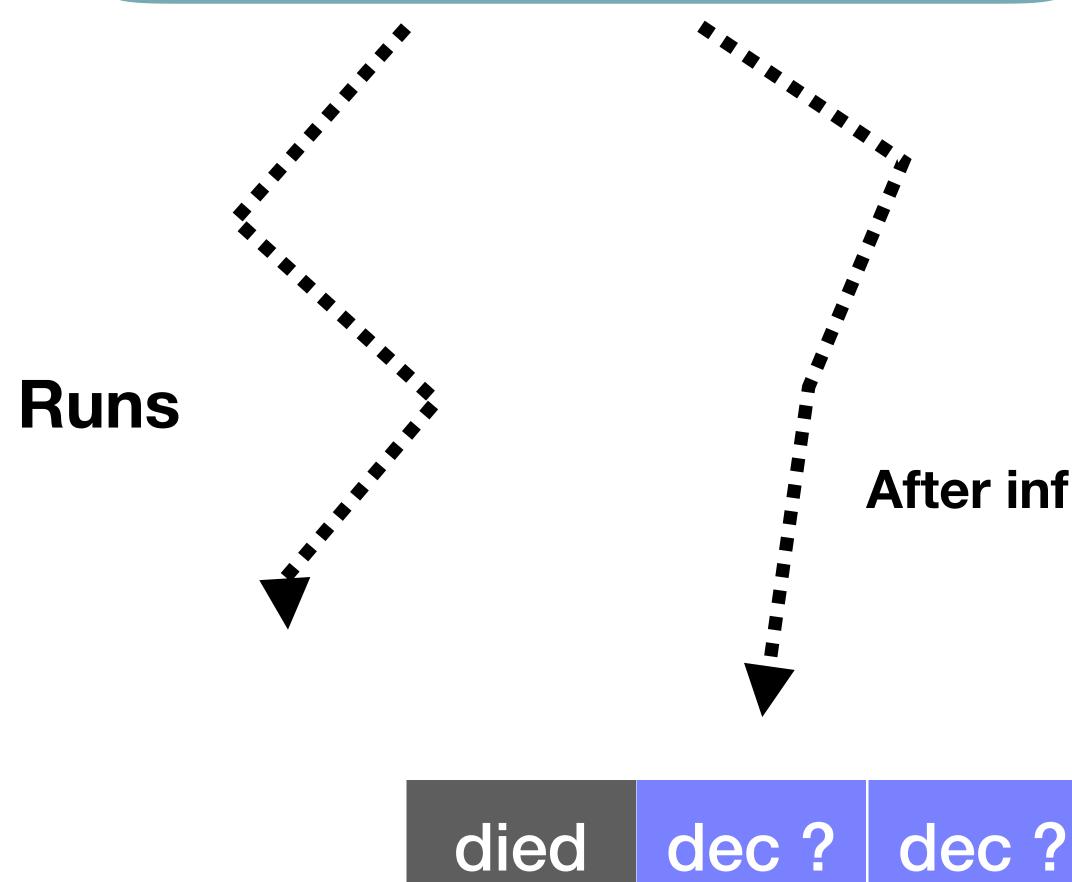




After infinite steps

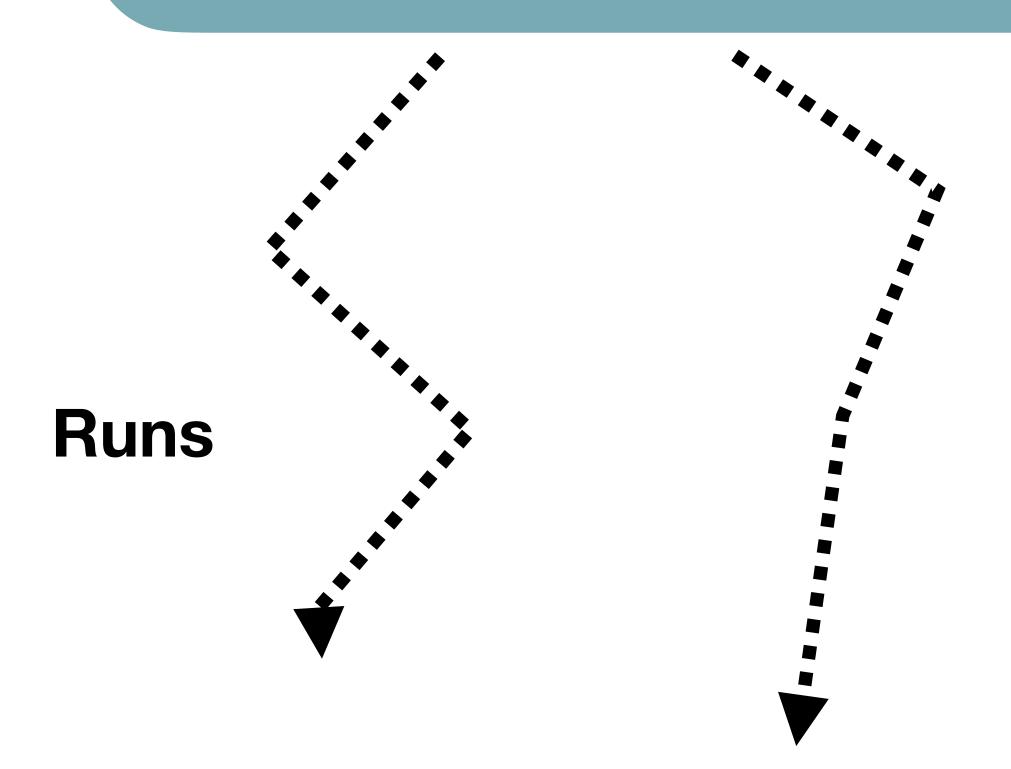


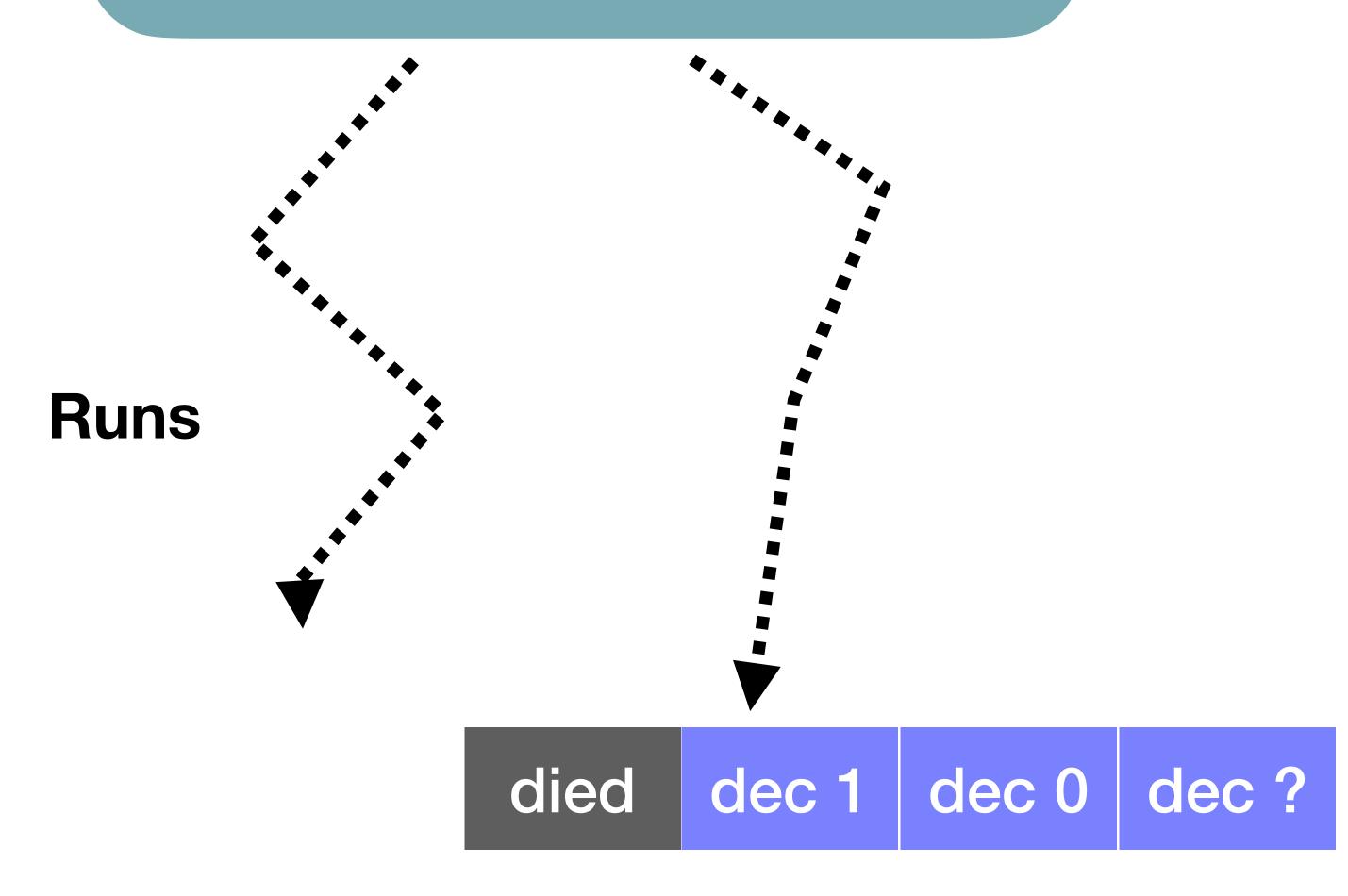
After infinite steps

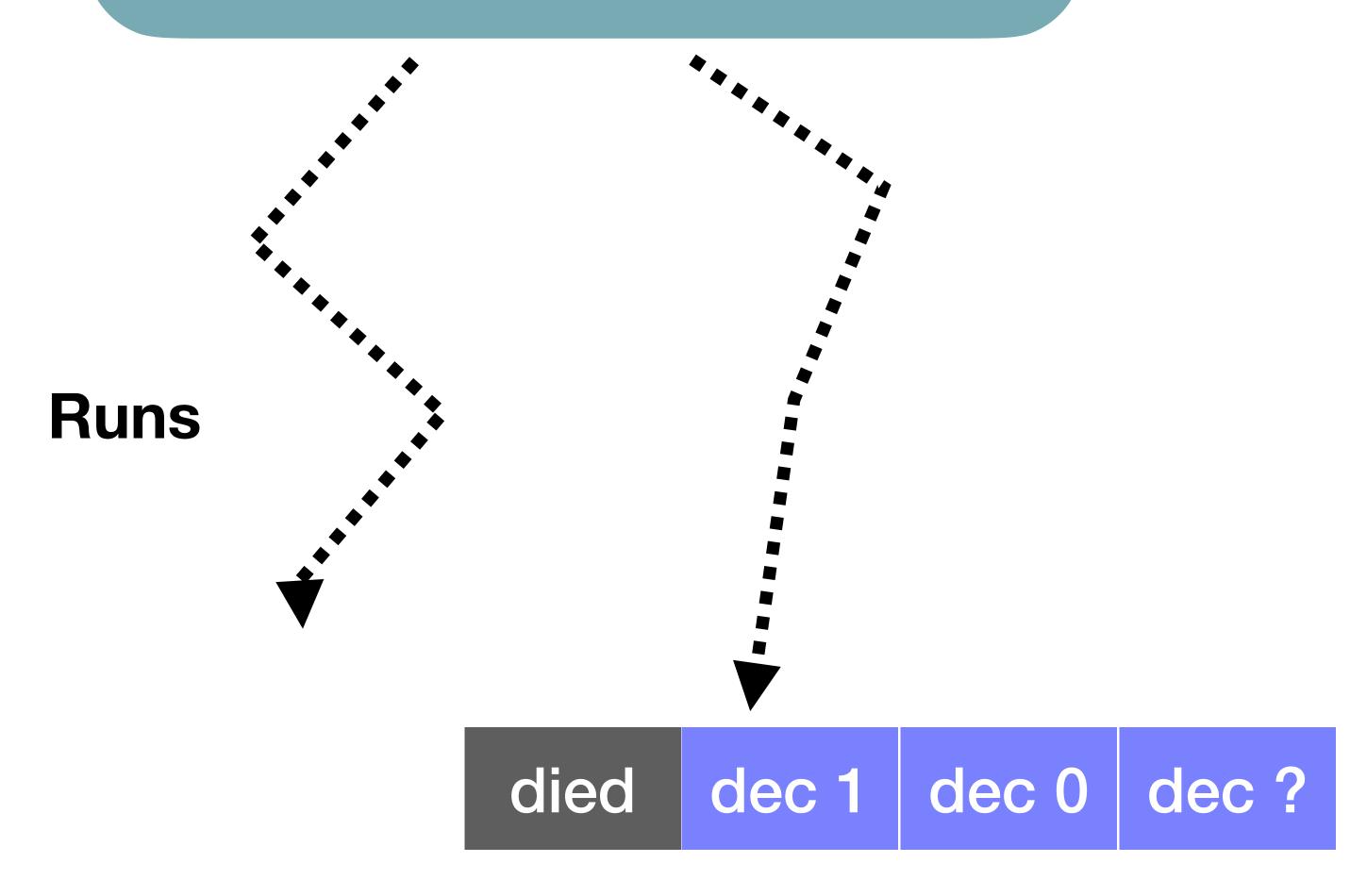


After infinite steps

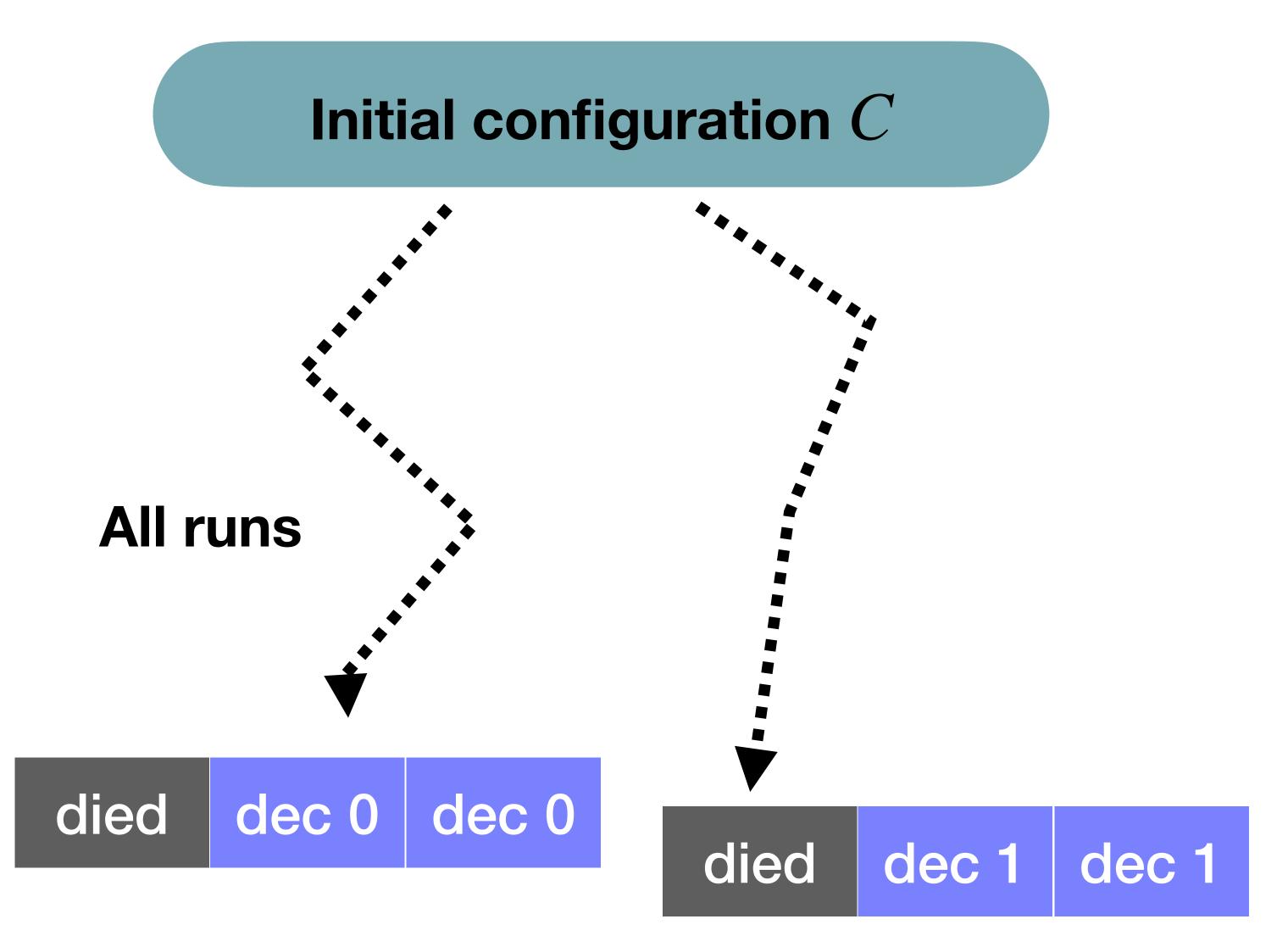
Violates Termination

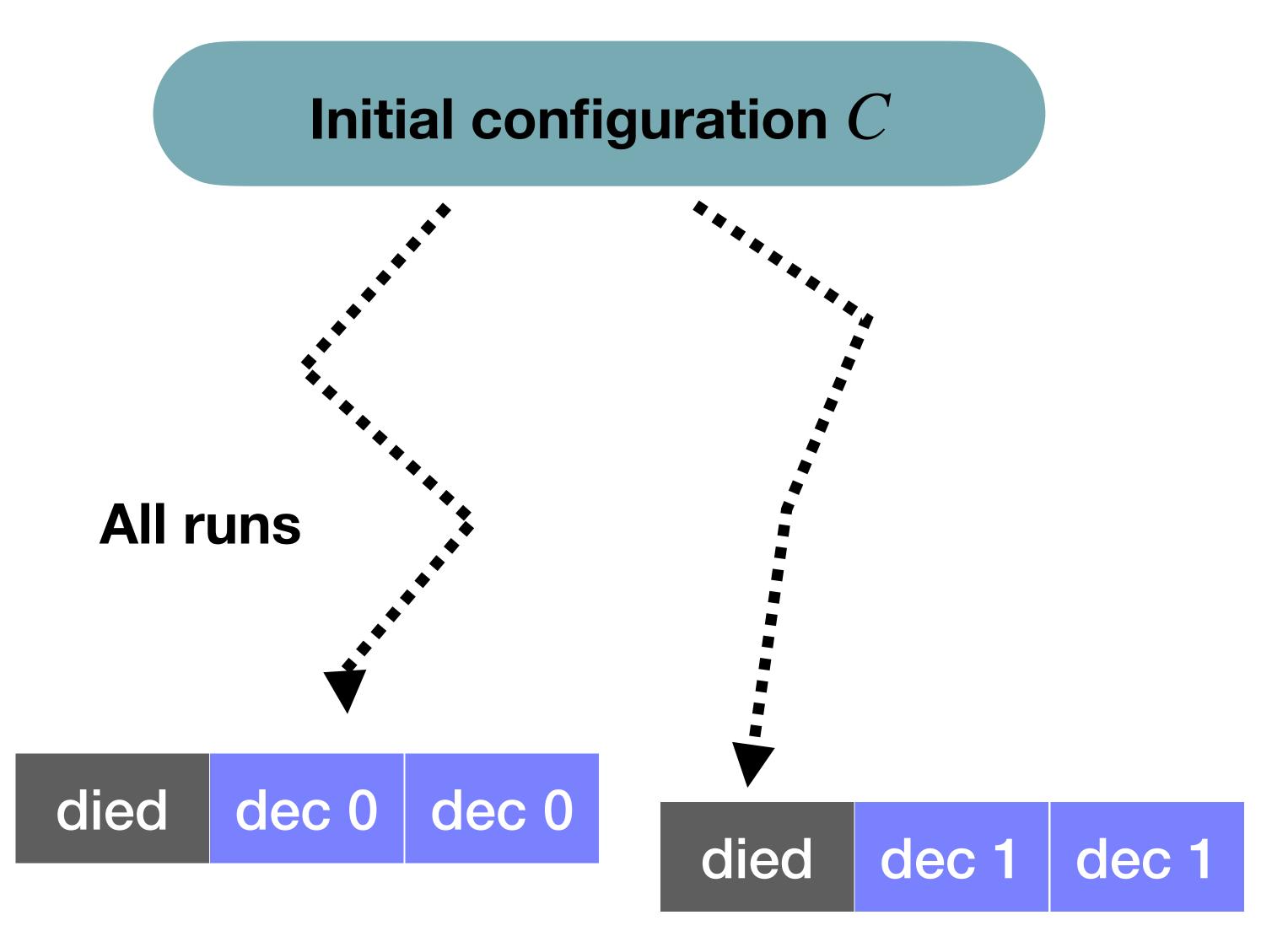


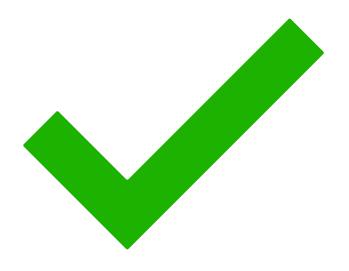


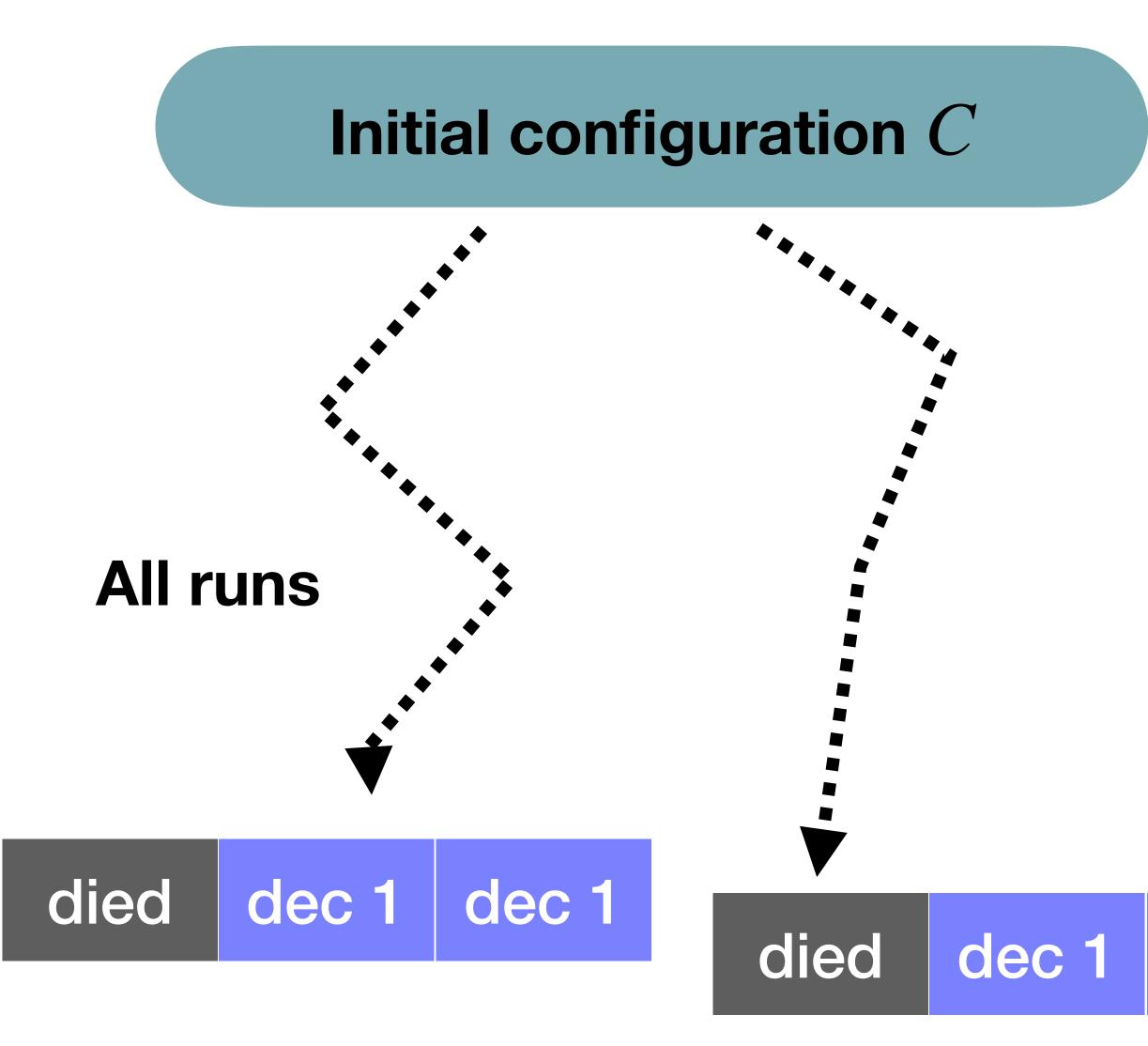


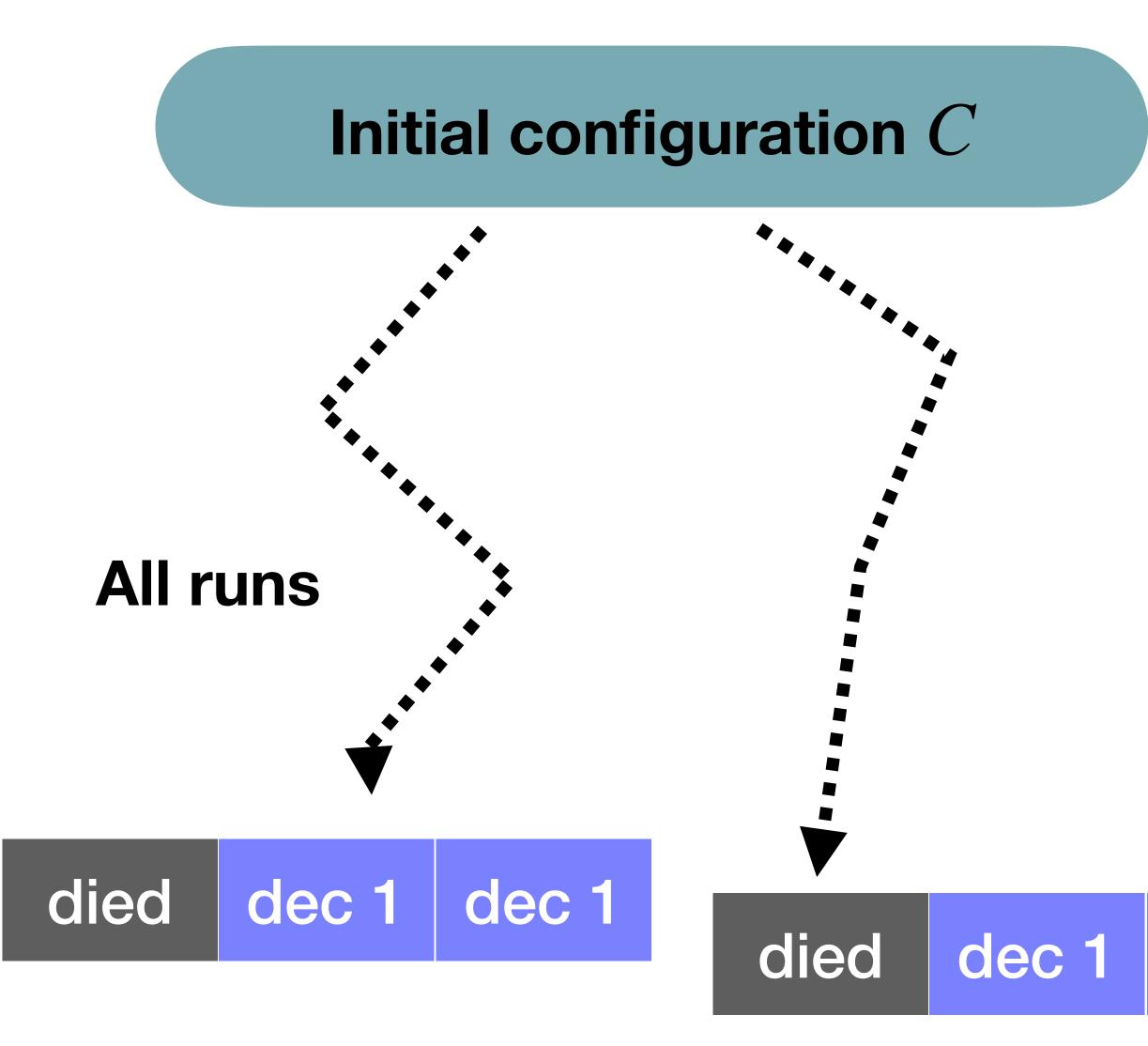
Violates Agreement











Violates Non-Triviality

The Impossibility Result

The Impossibility Result

- asynchronous system:
 - Messages maybe delayed arbitrarily and delivered out of order.
 - Processes do not have access to synchronized clocks.
 - Processes cannot detect the death of others.

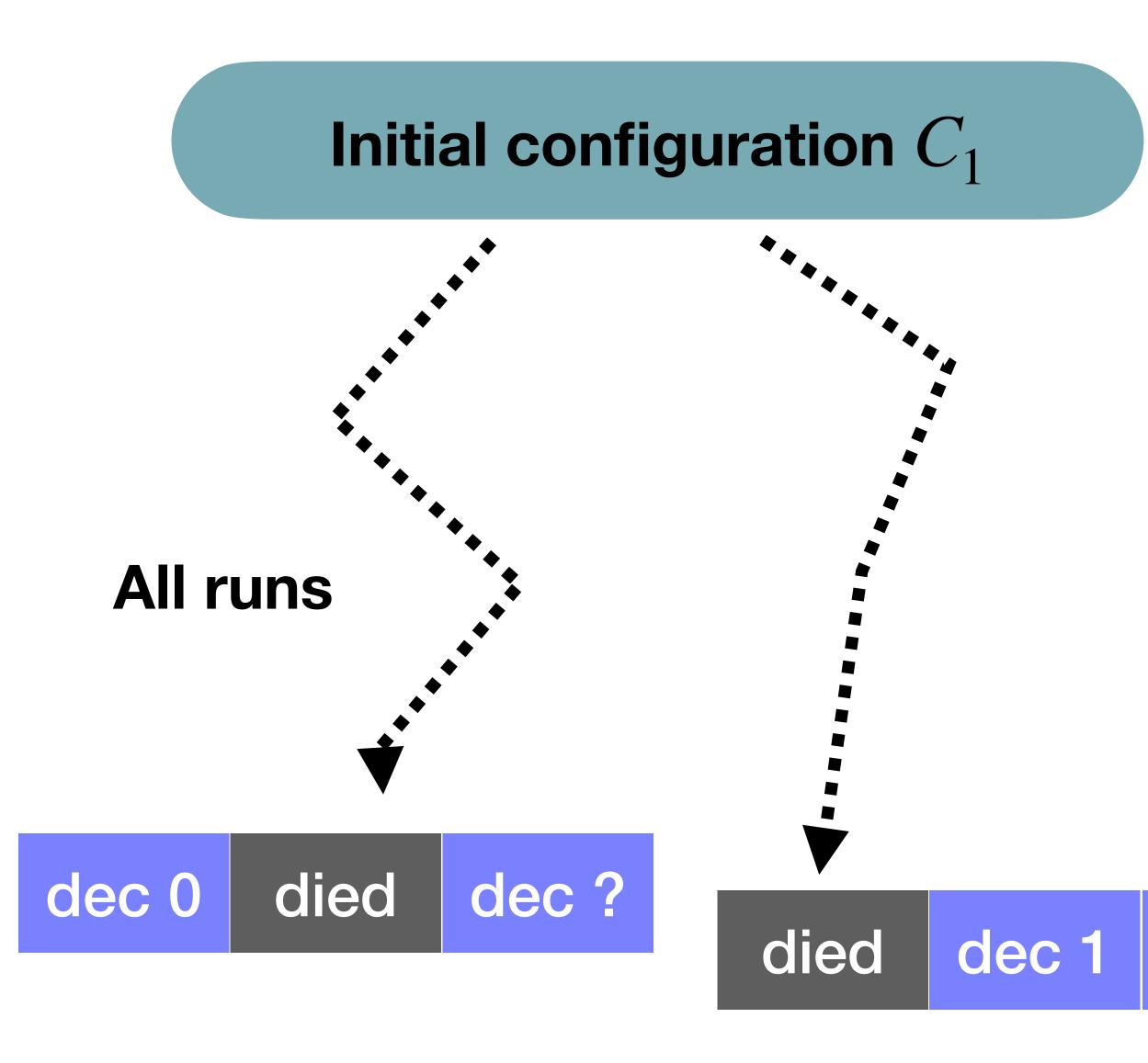
• Theorem. NO consensus system is totally correct in spite of one fault in

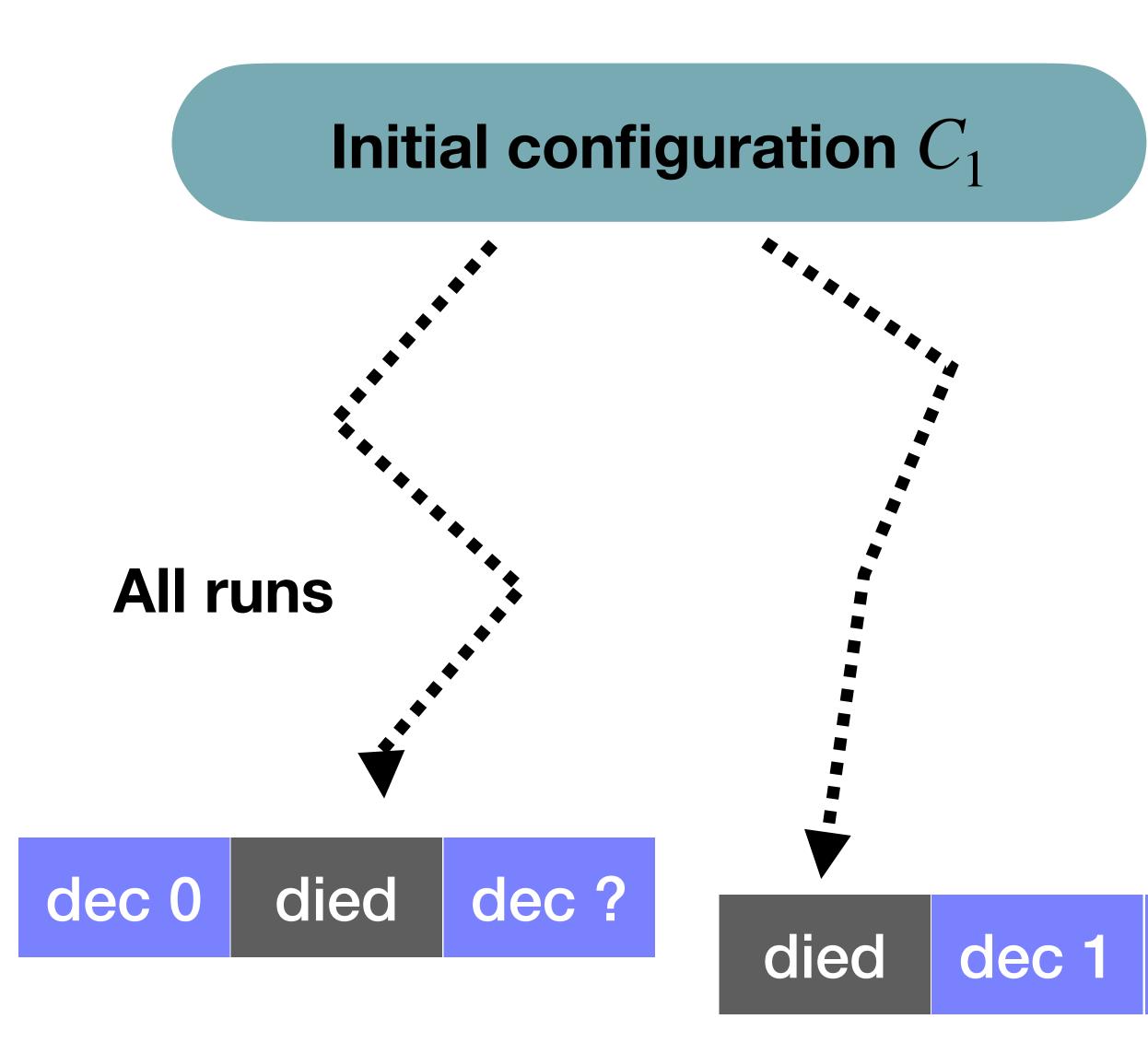
• Let V_C be the set of decision values of configurations reachable from C.

- Let V_C be the set of decision values of configurations reachable from C.
 - Say that *C* is **bivalent** if $|V_C| = 2$.

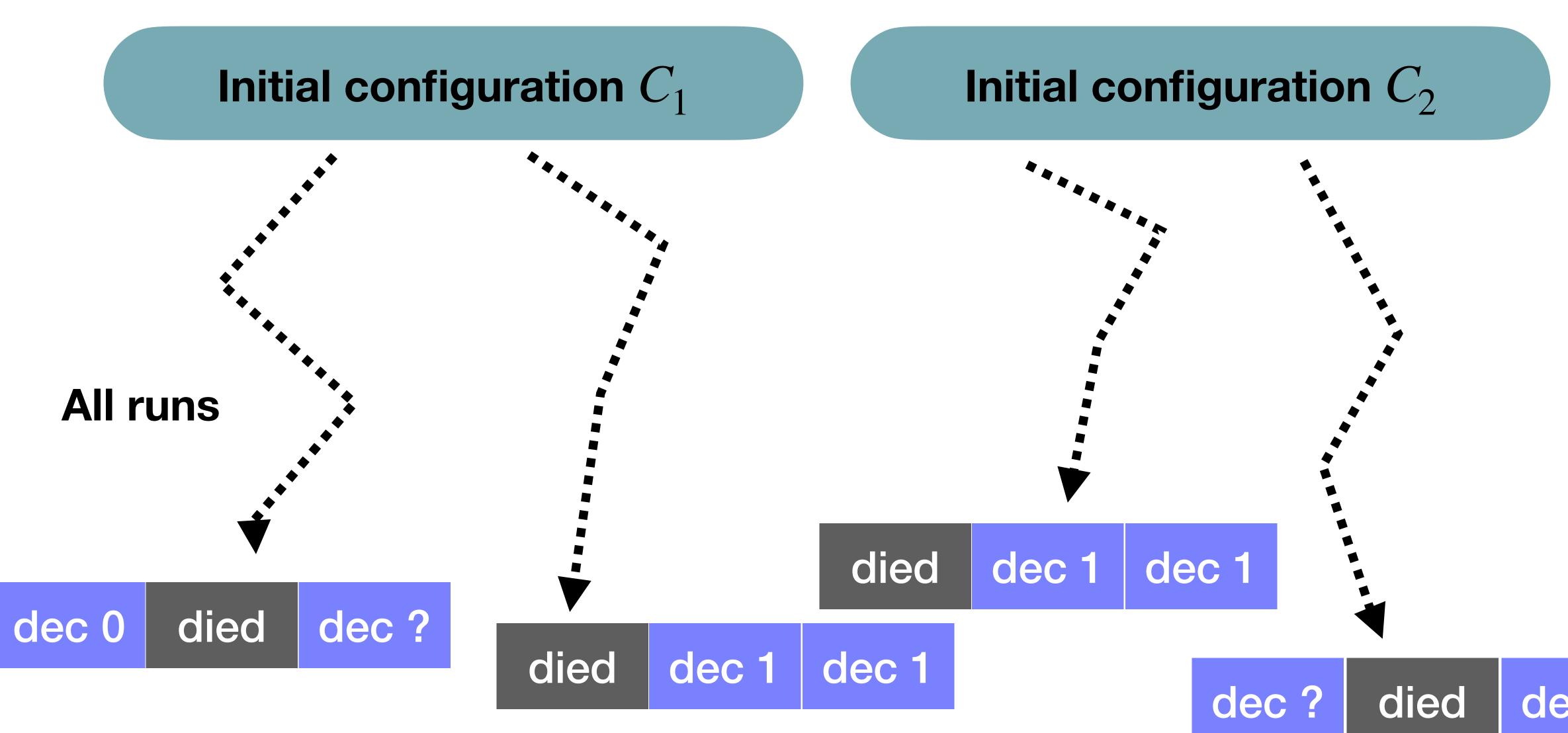
- Let V_C be the set of decision values of configurations reachable from C.
 - Say that C is **bivalent** if $|V_C| = 2$.
 - C is univalent if $|V_C| = 1$.

- Let V_C be the set of decision values of configurations reachable from C.
 - Say that C is **bivalent** if $|V_C| = 2$.
 - C is univalent if $|V_C| = 1$.
 - In particular, C is *i*-valent if $V_C = \{i\}$.

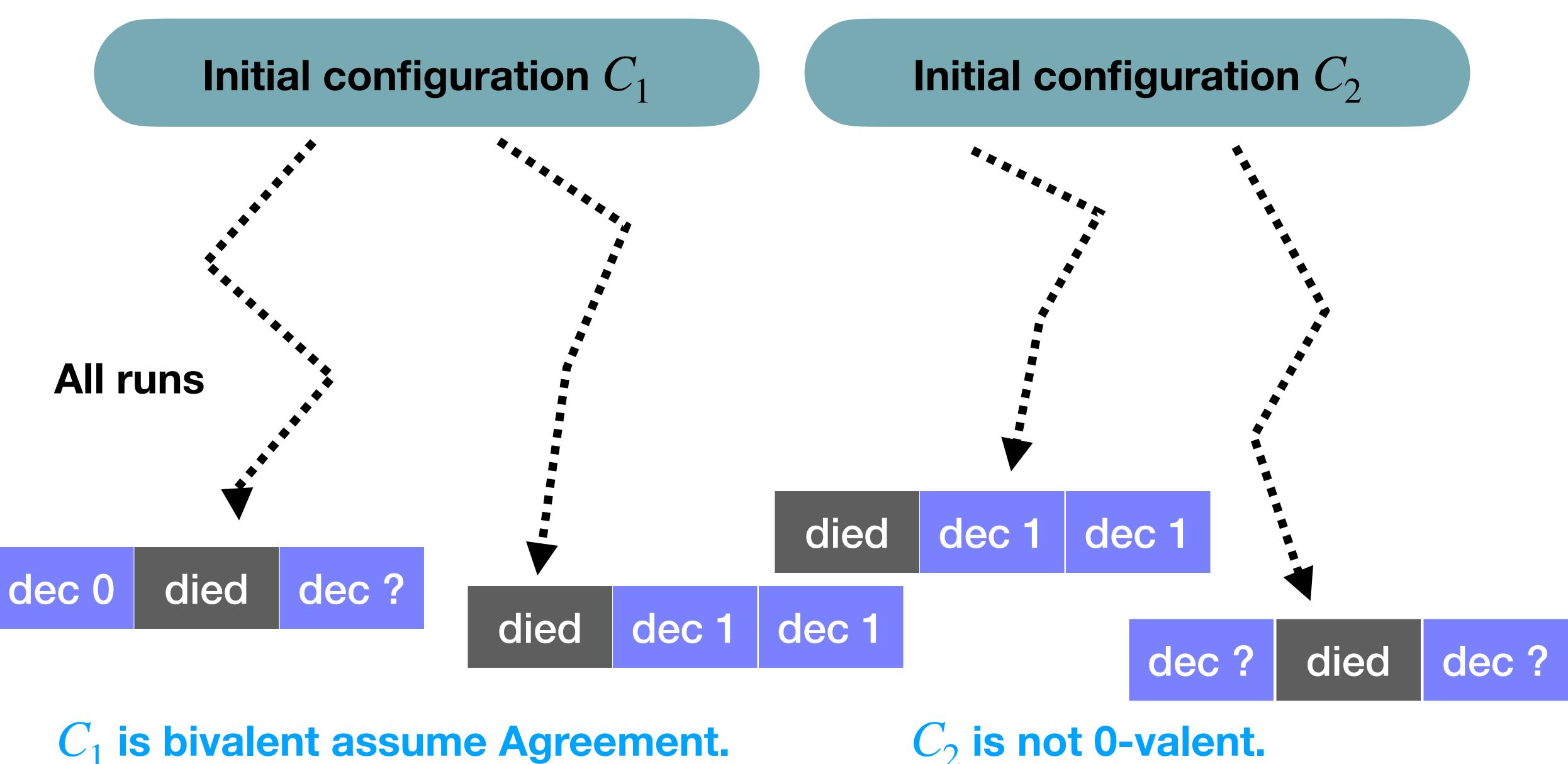




 C_1 is bivalent assume Agreement.



 C_1 is bivalent assume Agreement.



 C_1 is bivalent assume Agreement.

Bivalent

0-valent

Bivalent

0-valent

1-valent

Terminology

Bivalent

0-valent

1-valent

......

Terminology

Bivalent

0-valent

1-valent

• Proof by contradiction:

- Proof by contradiction:

• Assume P is a totally correct in spite of one fault. Then we can prove:

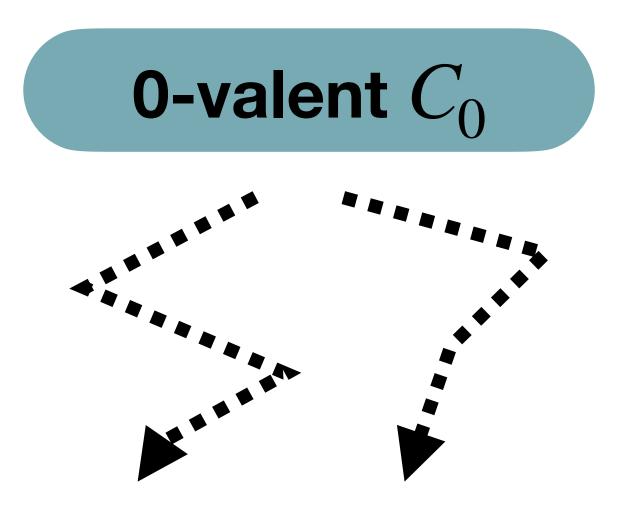
- Proof by contradiction:
 - - Claim 1. There exists a bivalent initial configuration C in P.

• Assume P is a totally correct in spite of one fault. Then we can prove:

- Proof by contradiction:
 - Assume P is a totally correct in spite of one fault. Then we can prove:
 - Claim 1. There exists a bivalent initial configuration C in P.
 - Claim 2. Given a bivalent configuration C and a step e that is applicable to C, there is a schedule σ that applies e in the last step and keeps the configuration $\sigma(C)$ bivalent.

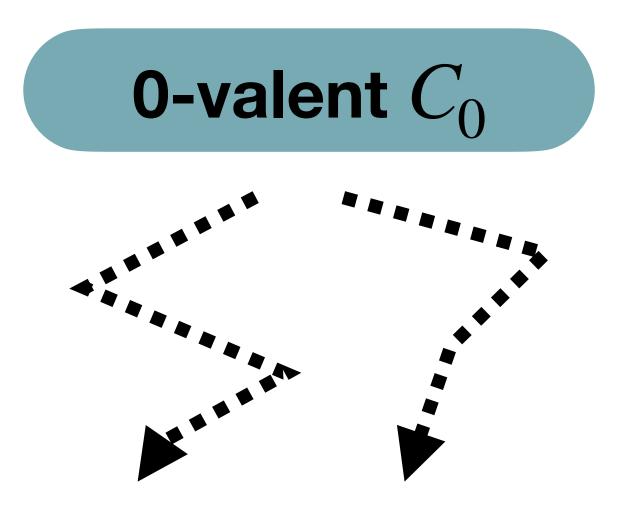
- Proof by contradiction:
 - Assume P is a totally correct in spite of one fault. Then we can prove:
 - Claim 1. There exists a bivalent initial configuration C in P.
 - Claim 2. Given a bivalent configuration C and a step e that is applicable to C, there is a schedule σ that applies e in the last step and keeps the configuration $\sigma(C)$ bivalent.
 - Claim 1 and Claim 2 implies there is an admissible run in P that stays in bivalent configuration, which contradicts with the total correctness.

• Assume not. Then by **Non-triviality**, the set of initial configurations in P contains:



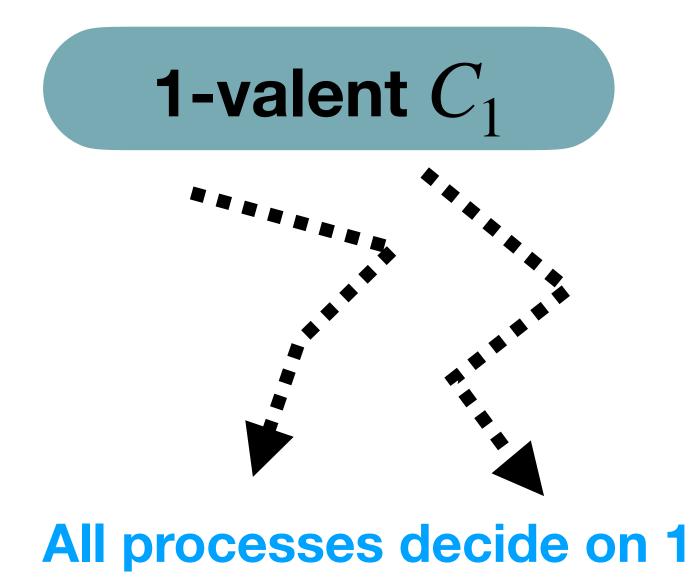
All processes decide on 0

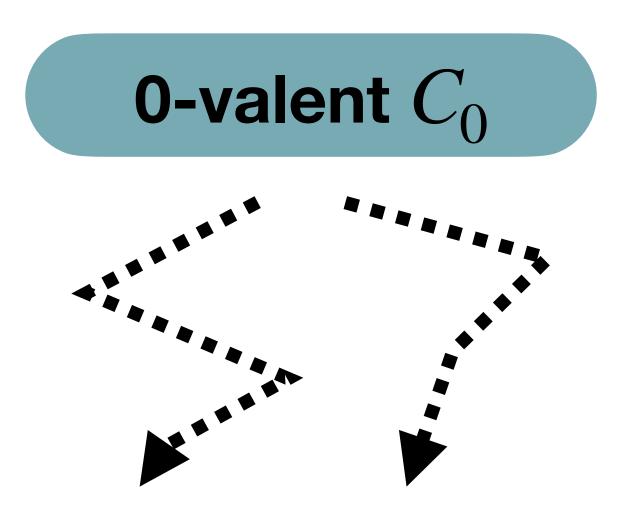
• Assume not. Then by **Non-triviality**, the set of initial configurations in P contains:



All processes decide on 0

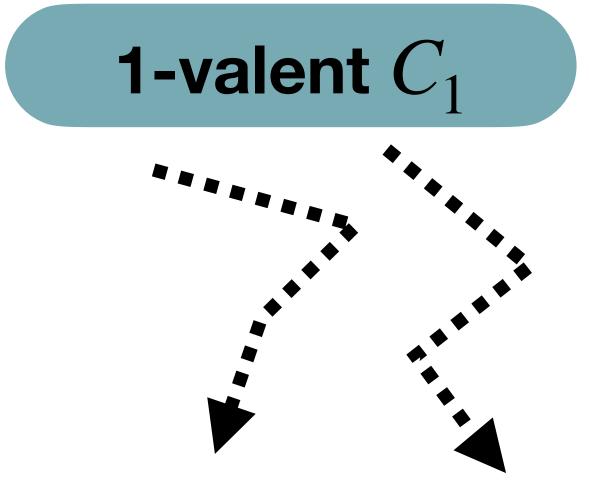
• Assume not. Then by **Non-triviality**, the set of initial configurations in P contains:





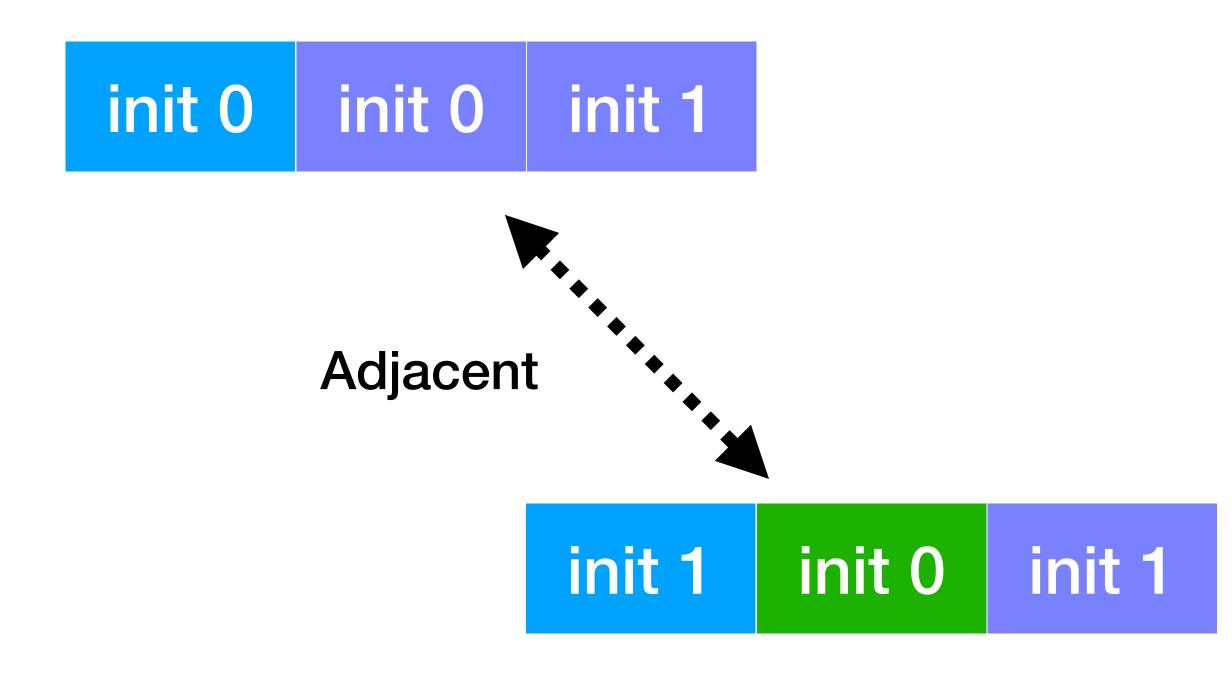
All processes decide on 0

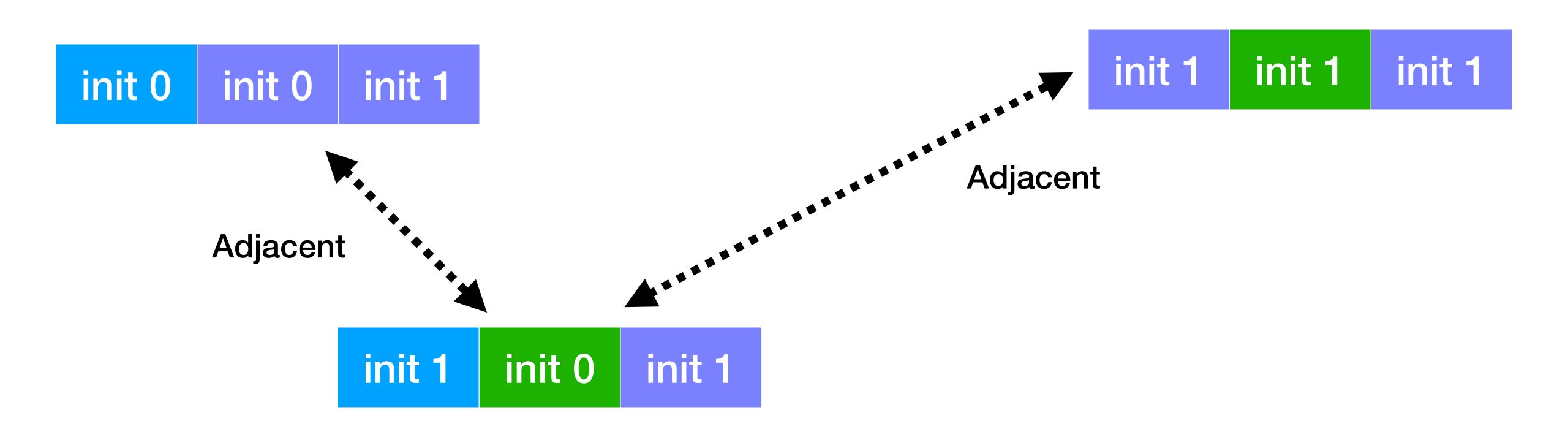
• Assume not. Then by **Non-triviality**, the set of initial configurations in P contains:



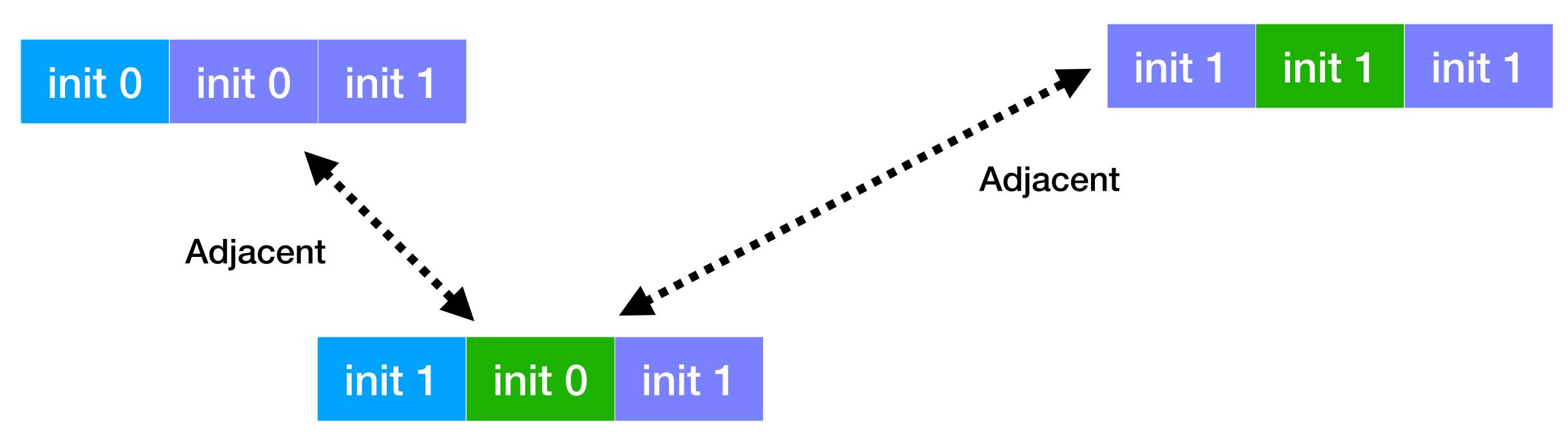
All processes decide on 1

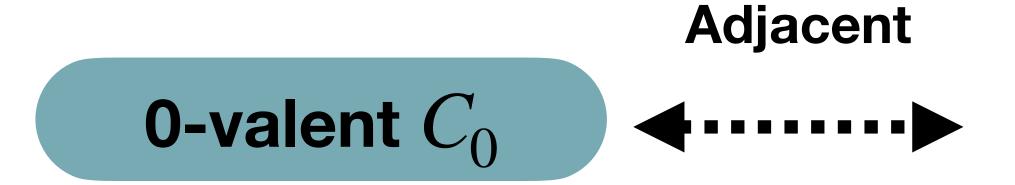
Definition: Two initial configurations are **adjacent** if they only differ in one process.





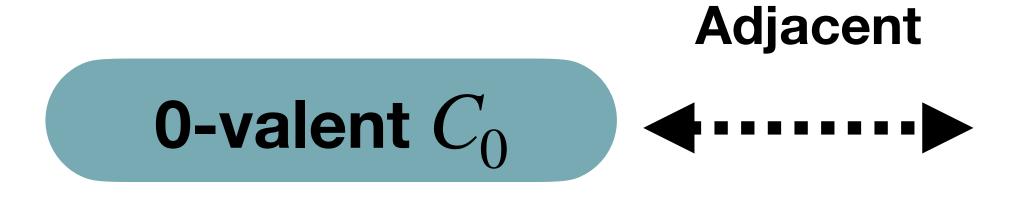
Any two configurations can be connected by a chain of adjacent configurations.



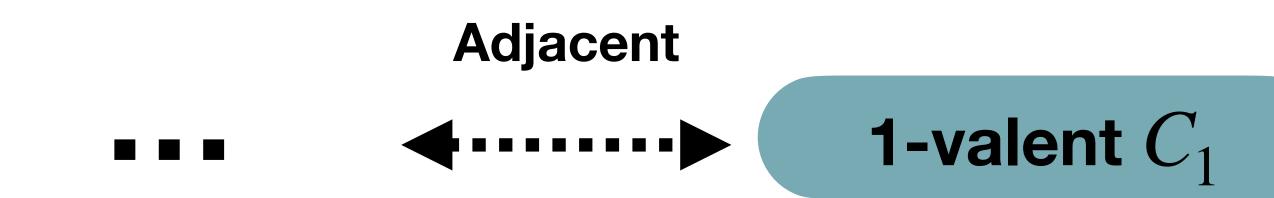


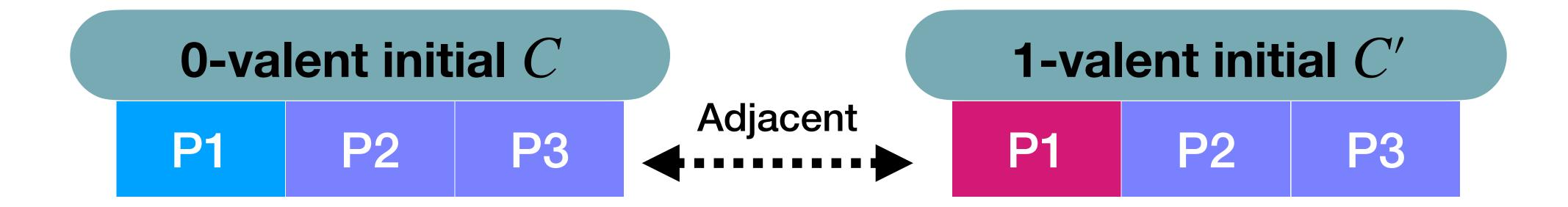
Adjacent \bullet **1-valent** C_1

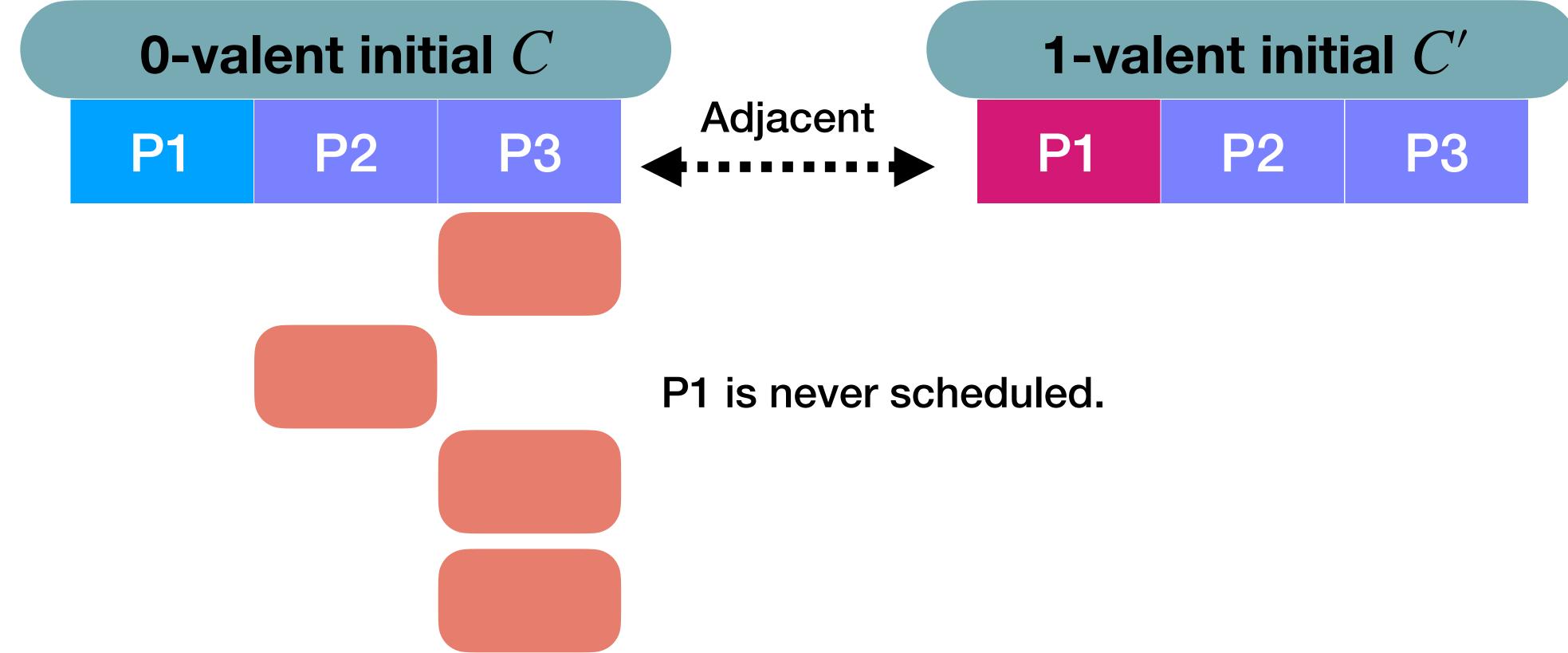
. . .

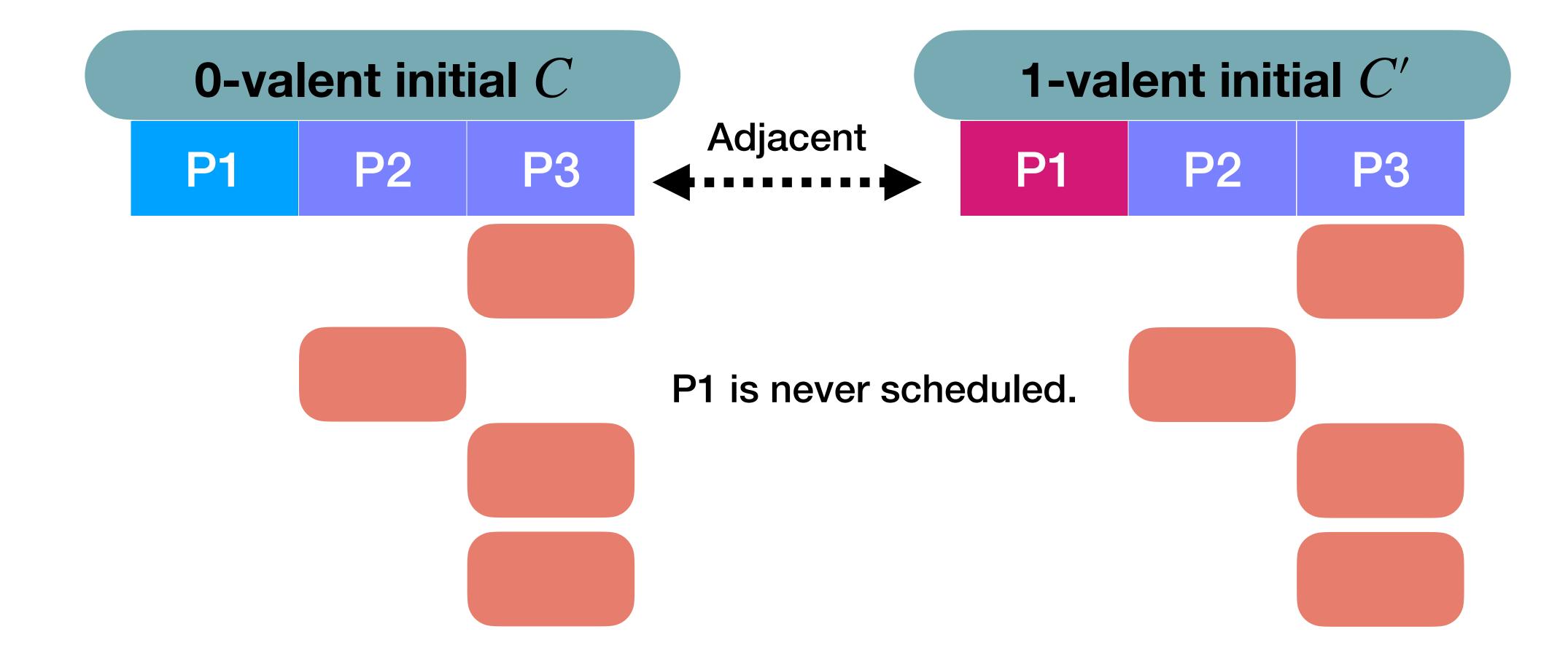


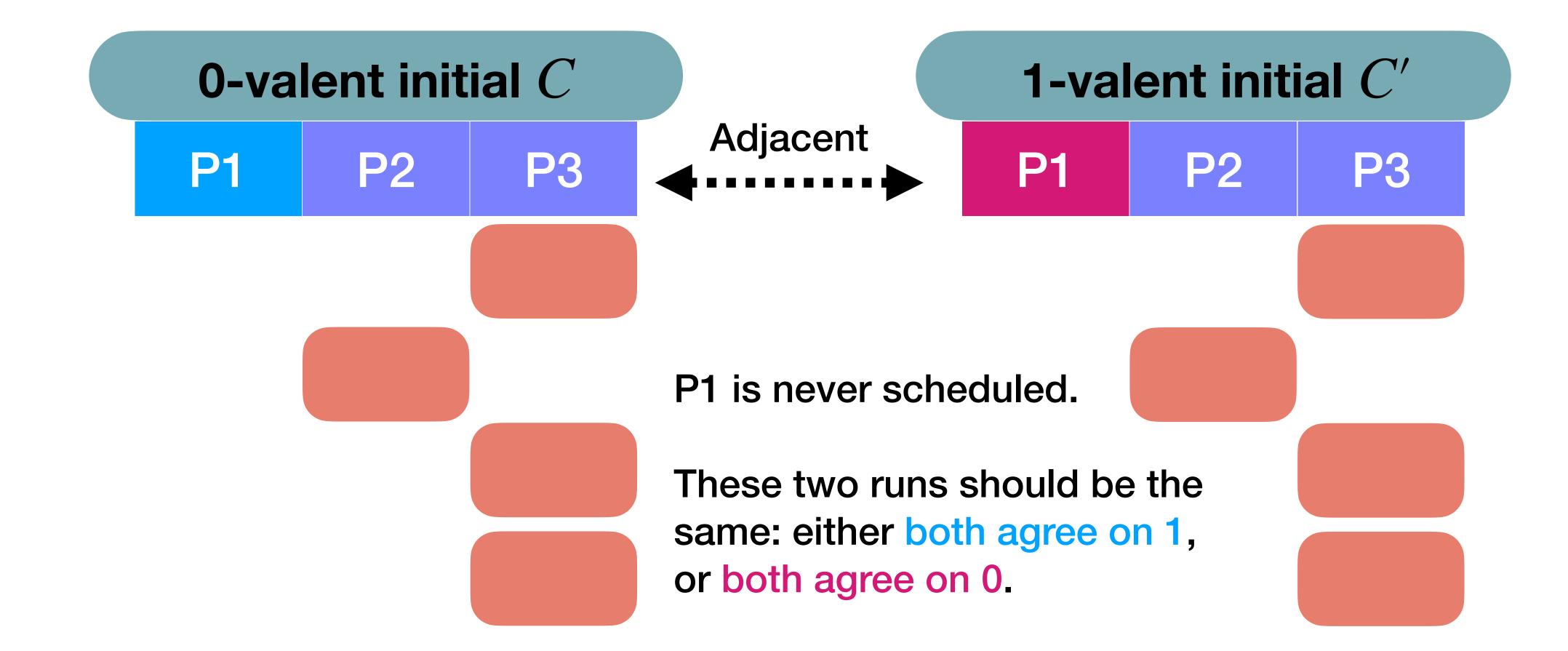
There exists adjacent C, C' in the chain connecting C_0, C_1 such that C is 0-valent, C' is 1-valent.



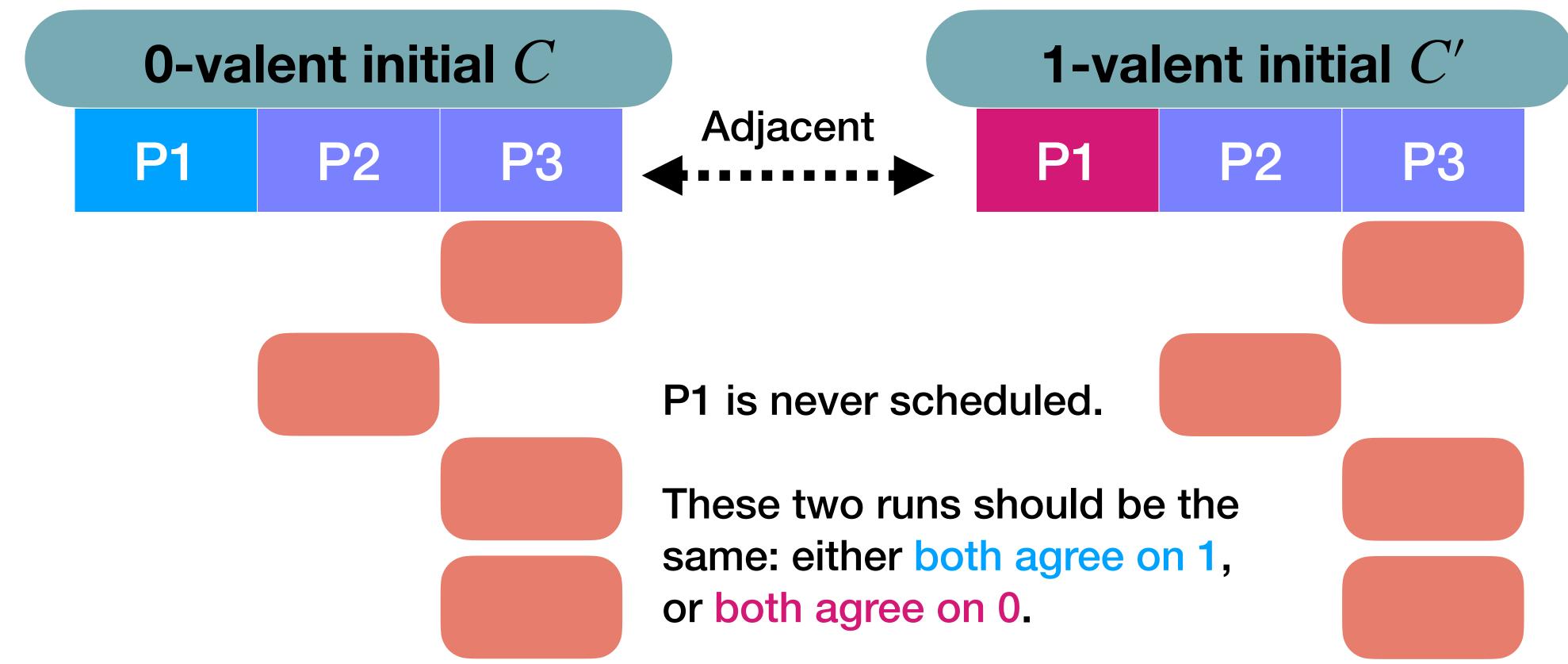




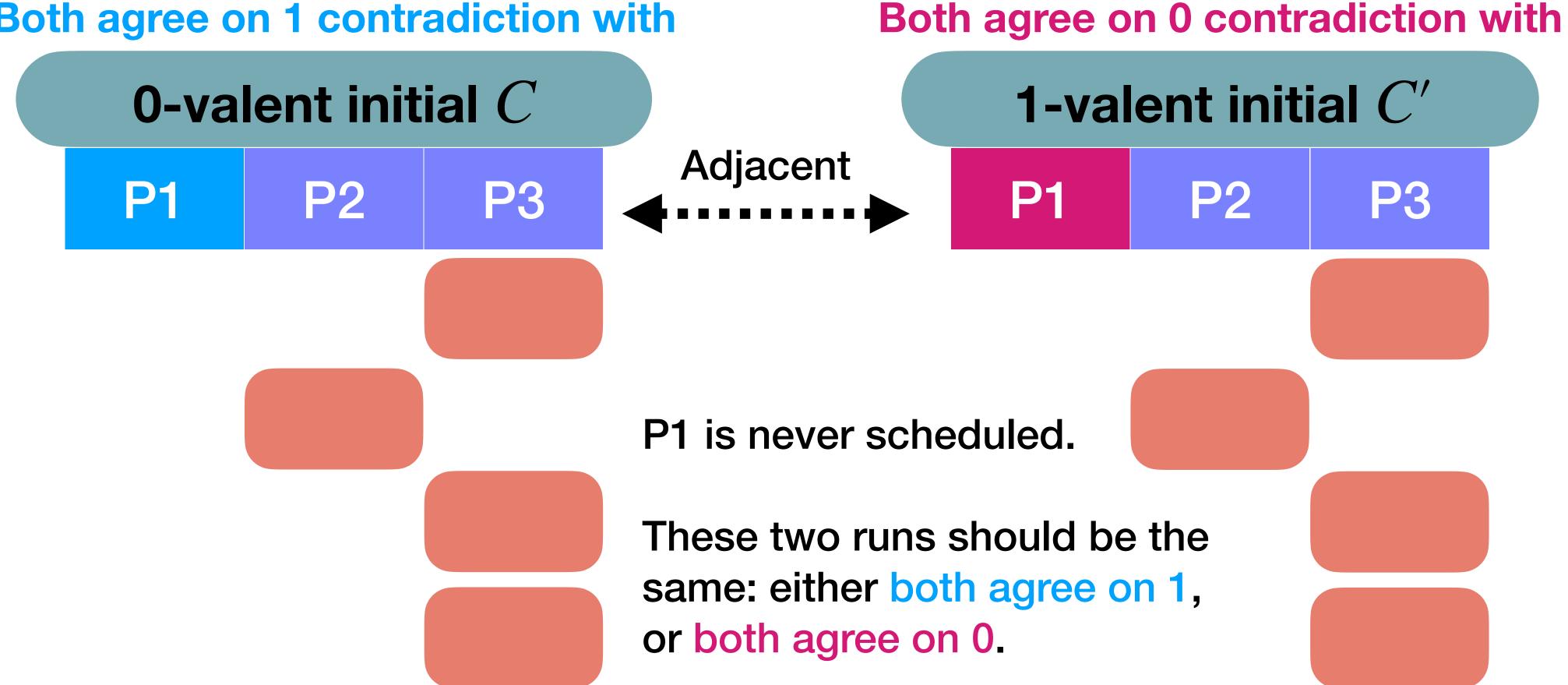




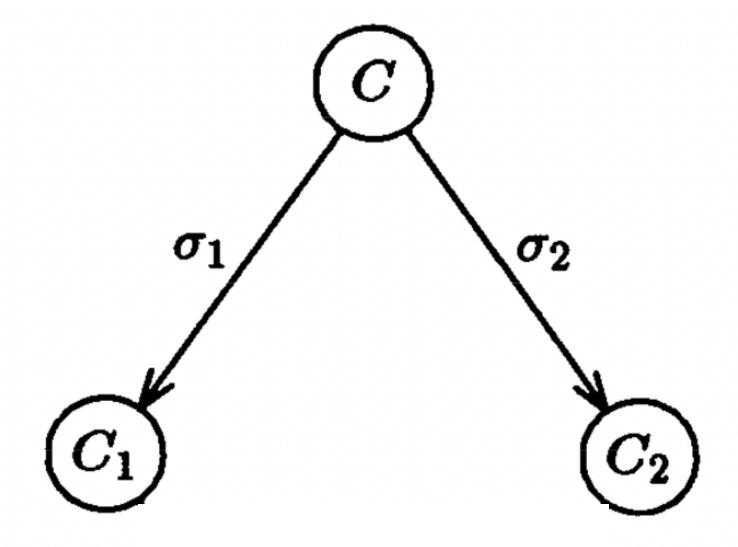
Both agree on 1 contradiction with



Both agree on 1 contradiction with

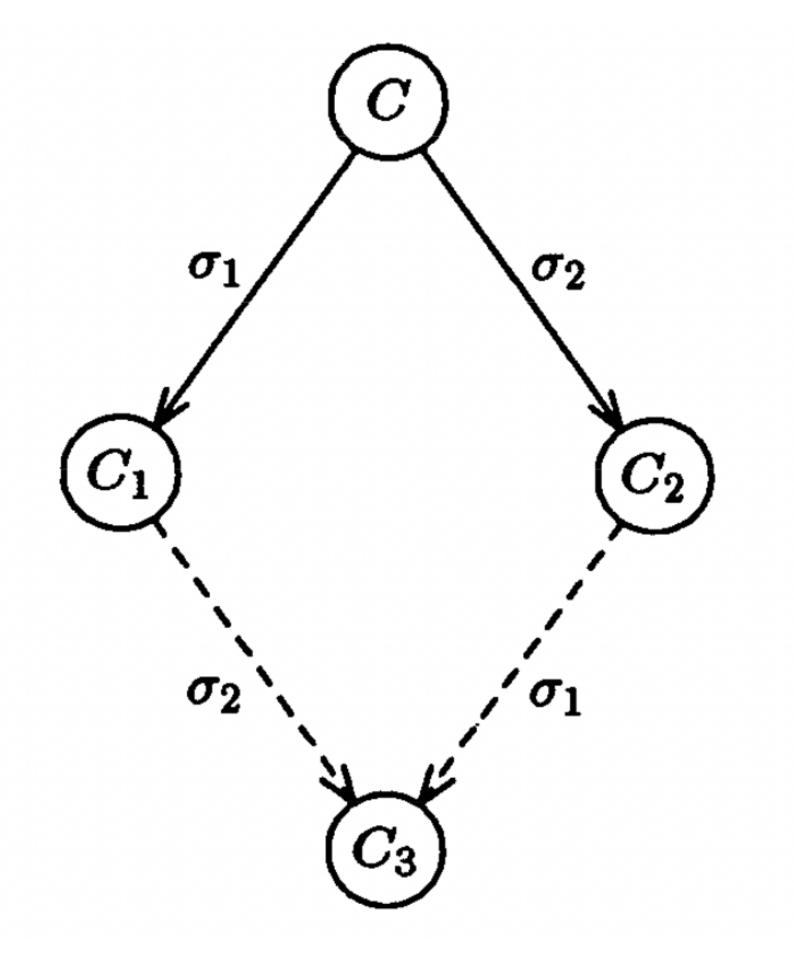


Lemma 1.



Lemma 1.

If schedule σ_1 and σ_2 are both applicable to the configuration *C* and the set of processes stepped in σ_1 and σ_2 are disjoint,



Lemma 1.

If schedule σ_1 and σ_2 are both applicable to the configuration C and the set of processes stepped in σ_1 and σ_2 are disjoint,

then σ_1 ; σ_2 and σ_2 ; σ_1 are also applicable to *C* and they are equivalent.

Bivalent

0-valent

1-valent

Bivalent

0-valent

1-valent

Lemma 2.

Bivalent

0-valent

1-valent

Lemma 2.

If Claim 2 does not hold,

Bivalent

0-valent

1-valent

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent C and two steps e, e' operating on the same process p such that

Bivalent

0-valent

1-valent

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent C and two steps e, e' operating on the same process p such that

- e(C) is a *i*-valent configuration.

Bivalent

0-valent

1-valent

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent C and two steps e, e' operating on the same process p such that

- e(C) is a *i*-valent configuration.

- e(e'(C)) is an (1 - i)-valent configuration.

C

0-valent

1-valent

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent C and two steps e, e' operating on the same process p such that

- e(C) is a *i*-valent configuration.

- e(e'(C)) is an (1 - i)-valent configuration.

Bivalent

0-valent

1-valent

e'

Lemma 2.

If Claim 2 does not hold,

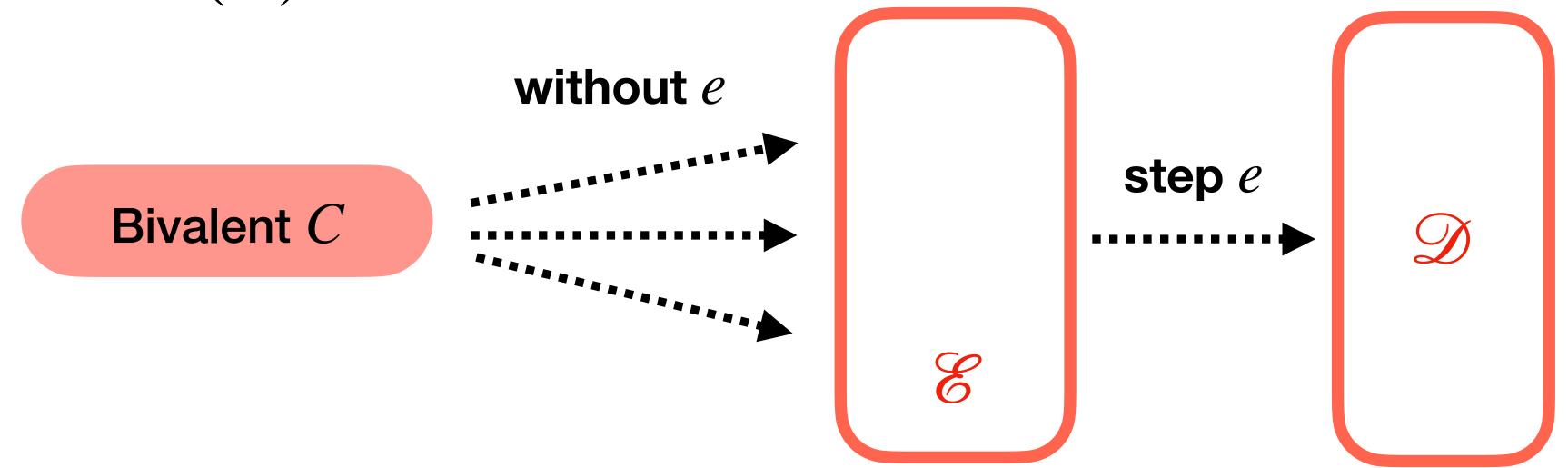
then there exists a bivalent C and two steps e, e' operating on the same process p such that

- e(C) is a *i*-valent configuration.

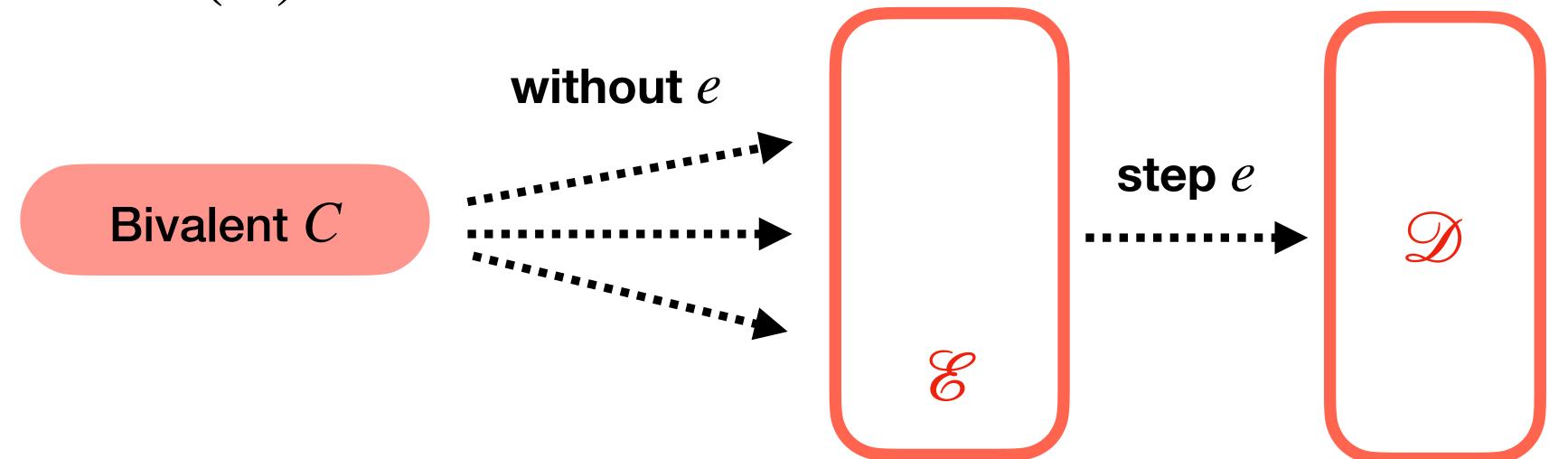
- e(e'(C)) is an (1 - i)-valent configuration.

 $\mathcal{D} = e(\mathcal{E}).$

 $\mathcal{D} = e(\mathcal{E}).$

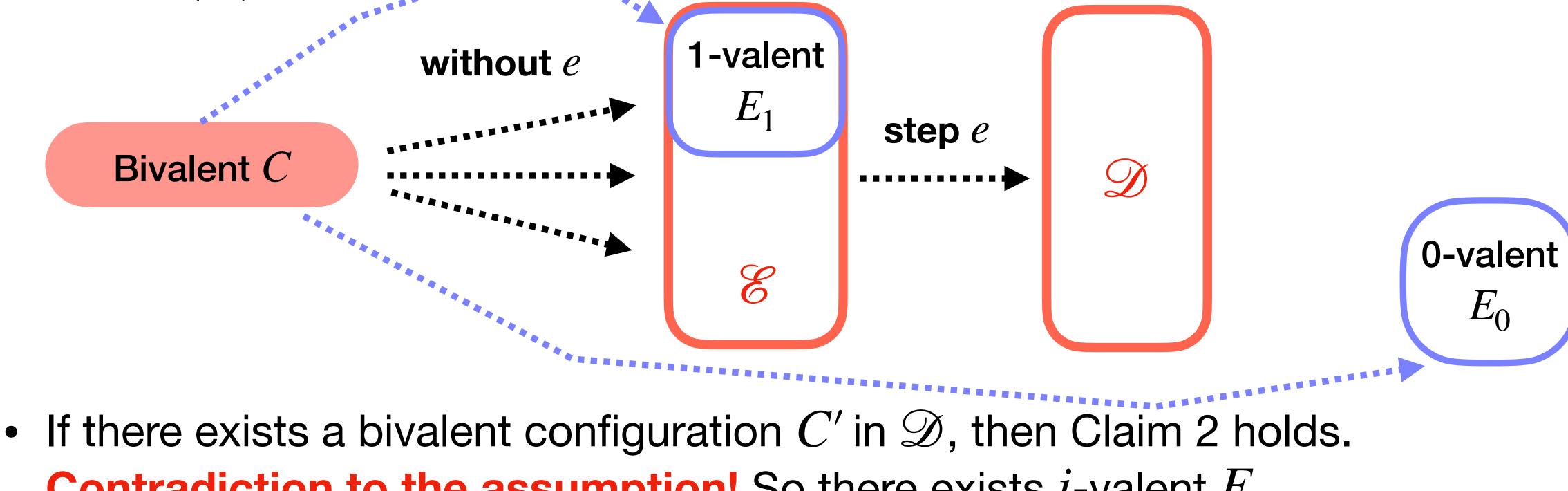


 $\mathcal{D} = e(\mathcal{E}).$



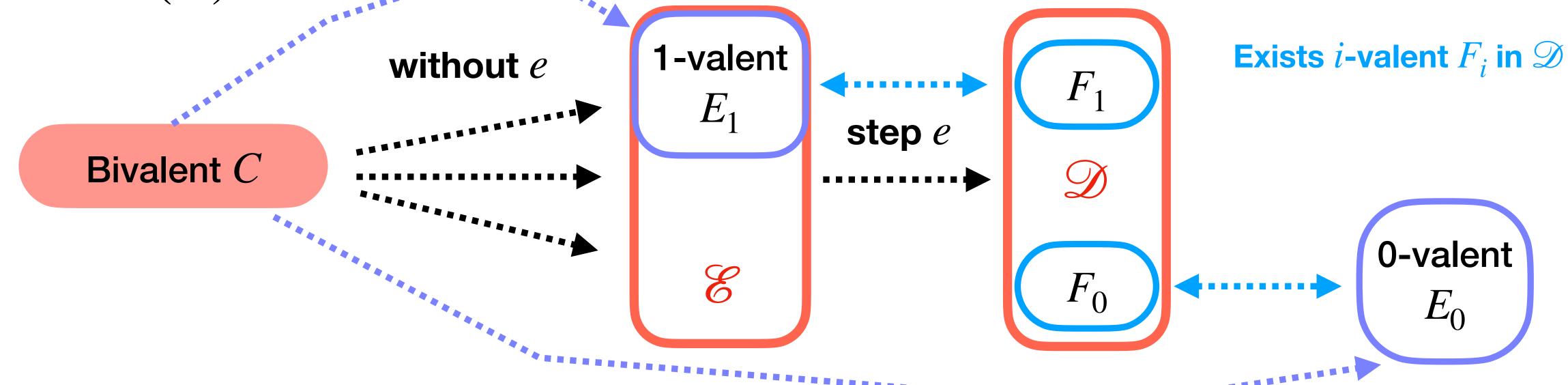
• If there exists a bivalent configuration C' in \mathscr{D} , then Claim 2 holds. **Contradiction to the assumption!** So there exists *i*-valent E_i .

 $\mathcal{D} = e(\mathcal{E}).$



Contradiction to the assumption! So there exists *i*-valent E_i .

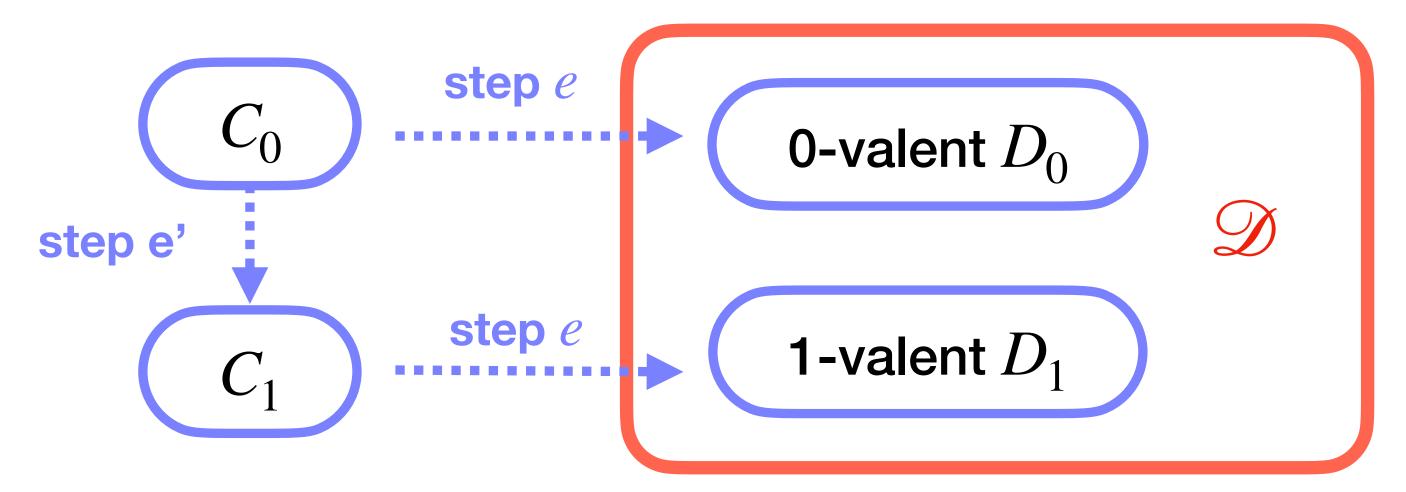
 $\mathcal{D} = e(\mathcal{E}).$



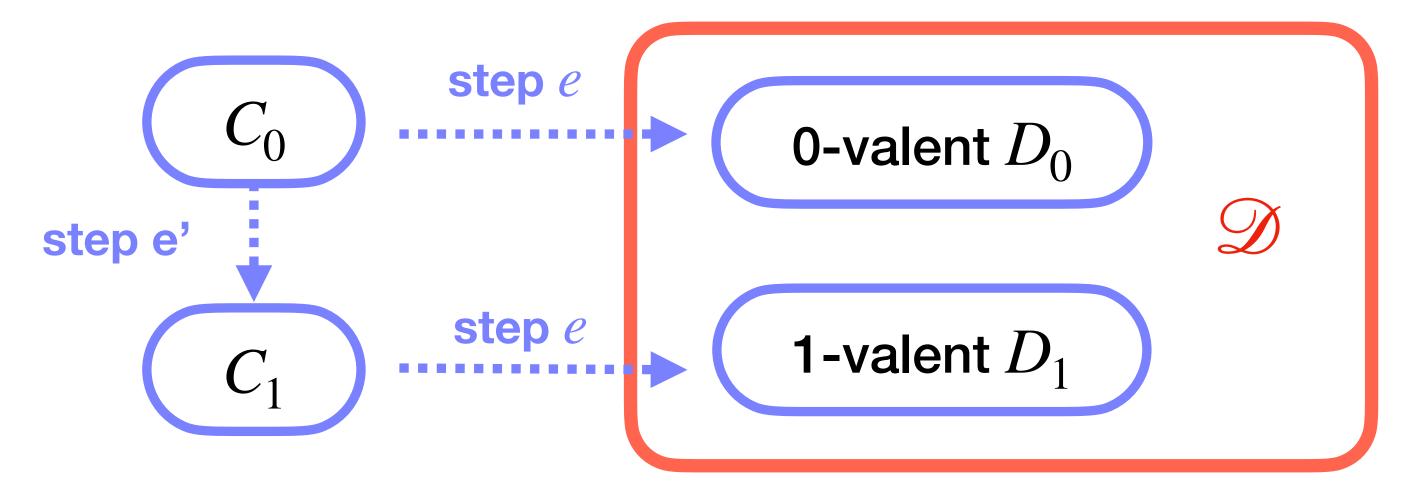
• If there exists a bivalent configuration C' in \mathscr{D} , then Claim 2 holds. **Contradiction to the assumption!** So there exists *i*-valent E_i .

• Skip some steps ... we can prove that there exists

• Skip some steps ... we can prove that there exists

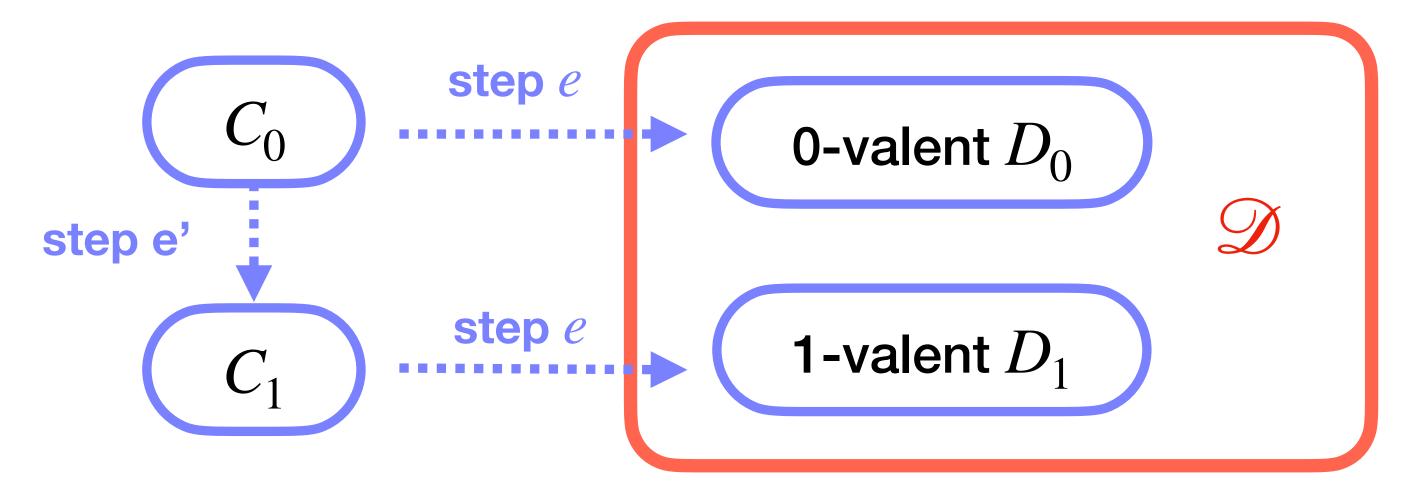


• Skip some steps ... we can prove that there exists



• If e and e' operate on different processors, then we can prove $(e; e')(C_0) = (e'; e)(C_0)$, which implies $D_0 = D_1$. Impossible!

• Skip some steps ... we can prove that there exists



- If e and e' operate on different processors, then we can prove $(e; e')(C_0) = (e'; e)(C_0)$, which implies $D_0 = D_1$. Impossible!
- Lemma 2 proved!

Bivalent

e

0-valent

1-valent

e

e'

Bivalent

e

0-valent

1-valent

e

e′

Proof by Contradiction (again):

Bivalent

e′

0-valent

1-valent

Proof by Contradiction (again):

Assume Claim 2 is not true, then by Lemma 2, there exists a bivalent Cand two steps e, e' as depicted in the diagram and e and e' both operate on a process p.

Bivalent

e′

0-valent

1-valent

Proof by Contradiction (again):

Assume Claim 2 is not true, then by Lemma 2, there exists a bivalent Cand two steps e, e' as depicted in the diagram and e and e' both operate on a process p.

Bivalent

e

0-valent

1-valent

e

e'

Bivalent

e

0-valent

1-valent

e

e'

There exists schedule σ that leads C to a consensus A without stepping p.

Bivalent

e

e'

0-valent

1-valent

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C)) = e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.

e'

0-valent

1-valent

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C)) = e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.

e'

0-valent

1-valent

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C)) = e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.

Similarly, $\sigma(e(e'(C))) = e(e'(\sigma(C)))$, so $e(e'(\sigma(C)))$ has to be 0-valent.

e'

0-valent

1-valent

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C)) = e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.

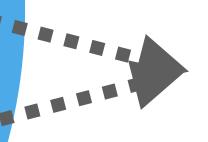
Similarly, $\sigma(e(e'(C))) = e(e'(\sigma(C)))$, so $e(e'(\sigma(C)))$ has to be 0-valent.

0-valent

1-valent

There exists schedule σ that leads C to a consensus A without stepping p.

By lemma 1, $\sigma(e(C)) = e(\sigma(C))$, so $e(\sigma(C))$ has to be 1-valent.



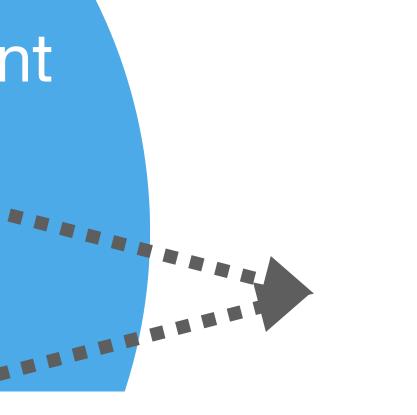
Similarly, $\sigma(e(e'(C))) = e(e'(\sigma(C)))$, so $e(e'(\sigma(C)))$ has to be 0-valent.

e

0-valent

1-valent

 e^{i}



e

0-valent

1-valent

$e(\sigma(C))$ has to be 1-valent implies $A = \sigma(C)$ cannot be 0-valent.

0-valent

1-valent

 $e(\sigma(C))$ has to be 1-valent implies $A = \sigma(C)$ cannot be 0-valent.

 $e(e'(\sigma(C)))$ has to be 0-valent implies $A = \sigma(C)$ cannot be 1-valent.

0-valent

1-valent

 $e(\sigma(C))$ has to be 1-valent implies $A = \sigma(C)$ cannot be 0-valent.

 $e(e'(\sigma(C)))$ has to be 0-valent implies $A = \sigma(C)$ cannot be 1-valent.

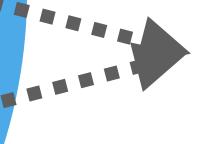
 $A = \sigma(C)$ has to be bivalent.

0-valent

1-valent

 $e(\sigma(C))$ has to be 1-valent implies $A = \sigma(C)$ cannot be 0-valent.

 $e(e'(\sigma(C)))$ has to be 0-valent implies $A = \sigma(C)$ cannot be 1-valent.



 $A = \sigma(C)$ has to be bivalent.

Claim 2 proved (with details omitted)!

Discussion Review the Proof

Discussion **Review the Proof**

Where did the proof use the condition that one process might be faulty?

Discussion **Review the Proof**

- Where did the proof use the condition that one process might be faulty?

• Are there other implicit assumptions of the set of initial configurations in P?

Discussion

What are remedies for this impossibility results?

Discussion What are remedies for this impossibility results?

beginning and prove that there exists a system that satisfy partial **correctness** (Agreement and Non-triviality).

The authors considered a case where faulty processes are all dead from the

Discussion

What are remedies for this impossibility results?

- The authors considered a case where faulty processes are all dead from the beginning and prove that there exists a system that satisfy partial correctness (Agreement and Non-triviality).
- What relaxations of the adversarial environment are effective?
 - Is a totally correct protocol possible if the message is delivered in order?

Discussion

What are remedies for this impossibility results?

- The authors considered a case where faulty processes are all dead from the beginning and prove that there exists a system that satisfy partial correctness (Agreement and Non-triviality).
- What relaxations of the adversarial environment are effective?
 - Is a totally correct protocol possible if the message is delivered in order?
- What enhancements of the processes would be effective?
 - Is a totally correct protocol possible if the processes can detect the faulty process?