
Presented by Jialu Bao on CS 6410, Sept 22. 2022

Impossibility of
Distributed Consensus with
One Faulty Process
Michael J. Fischer, Nancy A. Lynch, Michael S. Paterson
Journal of ACM, 1985

1

Review from Last Lecture

2

Review from Last Lecture
• Consensus problem:

• Agreement: if two processes decide, they must decide the same operation.

• Validity: a process can only decide an operation proposed by some replica.

2

Review from Last Lecture
• Consensus problem:

• Agreement: if two processes decide, they must decide the same operation.

• Validity: a process can only decide an operation proposed by some replica.

• In an asynchronous system:

• To tolerate crash failures, we need at least processes.

• Paxos meets the lower bound.

• To tolerate byzantine failures, we need at least processes.

• We saw a protocol that works with processes.

f 2f + 1

2f + 1

f 3f + 1

5f + 1

2

Review from Last Lecture
• Consensus problem:

• Agreement: if two processes decide, they must decide the same operation.

• Validity: a process can only decide an operation proposed by some replica.

• In an asynchronous system:

• To tolerate crash failures, we need at least processes.

• Paxos meets the lower bound.

• To tolerate byzantine failures, we need at least processes.

• We saw a protocol that works with processes.

f 2f + 1

2f + 1

f 3f + 1

5f + 1

2

+ Termination?

?

Review from Last Lecture
• Consensus problem:

• Agreement: if two processes decide, they must decide the same operation.

• Validity: a process can only decide an operation proposed by some replica.

• In an asynchronous system:

• To tolerate crash failures, we need at least processes.

• Paxos meets the lower bound.

• To tolerate byzantine failures, we need at least processes.

• We saw a protocol that works with processes.

f 2f + 1

2f + 1

f 3f + 1

5f + 1

2

This Paper
+ Termination?

?

Impossible!

Computation Model

3

• Every process starts with an initial value in (0,1).

Computation Model

3

• Every process starts with an initial value in (0,1).

Computation Model

3

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

• Every process starts with an initial value in (0,1).

• One process may die (stop entirely) at some point.

Computation Model

3

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

• Every process starts with an initial value in (0,1).

• One process may die (stop entirely) at some point.

• A non-faulty process may decide on a value in (0, 1).

Computation Model

3

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

• Every process starts with an initial value in (0,1).

• One process may die (stop entirely) at some point.

• A non-faulty process may decide on a value in (0, 1).

Computation Model

3

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

died init 1
dec 1

init 0
dec 1

init 1
dec ?

Steps after

4

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

4

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

4

Buffer

Configuration

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

4

Buffer

Configuration

A system (or protocol) consists of
- a set of initial configurations;
- deterministic transition function
of each process

ti
Pi

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

5

Buffer

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

5

Buffer

Schedule

Processes init 0 init 1 init 0 init 1

P1 P2 P3 P4

5

Buffer

Schedule

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

One step{

6

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

One step{

6

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3One step{

6

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3One step{ can perform
- internal updates
- send (p, m)

ti

6

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3One step{ can perform
- internal updates
- send (p, m)

ti

6

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3One step{ can perform
- internal updates
- send (p, m)

ti

6

(, 0) P2

(, 0) P4

send (p, m)
achieved by
putting (p, m)
in buffer

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

7

(, 0) P2

(, 0) P4

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

7

(, 0) P2

(, 0) P4

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

7

(, 0) P2

(, 0) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

7

(, 0) P2

(, 0) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

7

(, 0) P2

(, 0) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

7

(, 0) P2

(, 0) P4

(, null) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

7

(, 0) P2

(, 0) P4

(, null) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

7

(, 0) P2

(, 0) P4

(, null) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

Not delayed:
Receive() non-
deterministically choose

a message to

i

Pi
null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

7

(, 0) P2

(, 0) P4(, null) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

Not delayed:
Receive() non-
deterministically choose

a message to

i

Pi

0

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

t4(P4, m4)

7

(, 0) P2

(, 0) P4(, null) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

Not delayed:
Receive() non-
deterministically choose

a message to

i

Pi

0

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

t4(P4, m4)

=Receive(1)m1

7

(, 0) P2

(, 0) P4(, null) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

Not delayed:
Receive() non-
deterministically choose

a message to

i

Pi

0

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

t4(P4, m4)

=Receive(1)m1

t1(P1, m1)
7

(, 0) P2

(, 0) P4(, null) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

Not delayed:
Receive() non-
deterministically choose

a message to

i

Pi

0

null

send(, init)P2
send(, init)P4

Processes init 0 init 1 init 0 init 1

Buffer

P1 P2 P3 P4

=Receive(3)m3

(,)t3 P3 m3

=Receive(2)m2

t2(P2, m2)

=Receive(4)m4

t4(P4, m4)

=Receive(1)m1

t1(P1, m1)
A run

7

(, 0) P2

(, 0) P4(, null) P4

Message delayed:
Receive() returns null,
and buffer unchanged

i

send(,)P4 m2

Not delayed:
Receive() non-
deterministically choose

a message to

i

Pi

0

null

send(, init)P2
send(, init)P4

Total Correctness

8

Total Correctness
• is accessible in a system if is reachable from an initial configuration in . C′ P C′ C P

8

Total Correctness
• is accessible in a system if is reachable from an initial configuration in . C′ P C′ C P

• A run is admissible if process is faulty and all messages sent to non-faulty
processes are eventually delivered.

≤ 1

8

Total Correctness
• is accessible in a system if is reachable from an initial configuration in . C′ P C′ C P

• A run is admissible if process is faulty and all messages sent to non-faulty
processes are eventually delivered.

≤ 1

• A system is total correct in spite of one fault ifP

8

Total Correctness
• is accessible in a system if is reachable from an initial configuration in . C′ P C′ C P

• A run is admissible if process is faulty and all messages sent to non-faulty
processes are eventually delivered.

≤ 1

• A system is total correct in spite of one fault ifP

Termination: in any admissible run, some processes eventually make decisions.

8

Total Correctness
• is accessible in a system if is reachable from an initial configuration in . C′ P C′ C P

• A run is admissible if process is faulty and all messages sent to non-faulty
processes are eventually delivered.

≤ 1

• A system is total correct in spite of one fault ifP

Termination: in any admissible run, some processes eventually make decisions.

Agreement: in any accessible configuration, all decided processes agree.

8

Total Correctness
• is accessible in a system if is reachable from an initial configuration in . C′ P C′ C P

• A run is admissible if process is faulty and all messages sent to non-faulty
processes are eventually delivered.

≤ 1

• A system is total correct in spite of one fault ifP

Termination: in any admissible run, some processes eventually make decisions.

Agreement: in any accessible configuration, all decided processes agree.

Non-trivial: For , exists an accessible configuration in that agrees on . i ∈ {0,1} P i

8

9

9

Initial configuration C

Runs

9

After infinite steps

Initial configuration C

Runs

9

died dec ? dec ? dec ?

After infinite steps

Initial configuration C

Runs

9

died dec ? dec ? dec ?

Violates Termination
After infinite steps

Initial configuration C

Runs

Initial configuration C

10

Runs

Initial configuration C

10

died dec 1 dec 0 dec ?

Runs

Initial configuration C

10

died dec 1 dec 0 dec ?

Violates AgreementRuns

Initial configuration C

11

died dec 1 dec 1
died dec 0 dec 0

All runs

Initial configuration C

11

died dec 1 dec 1
died dec 0 dec 0

All runs

Initial configuration C

12

died dec 1 dec 1

All runs

died dec 1 dec 1

Initial configuration C

12

died dec 1 dec 1

Violates Non-TrivialityAll runs

died dec 1 dec 1

The Impossibility Result

13

The Impossibility Result

• Theorem. No consensus system is totally correct in spite of one fault in
asynchronous system:

• Messages maybe delayed arbitrarily and delivered out of order.

• Processes do not have access to synchronized clocks.

• Processes cannot detect the death of others.

13

Terminology

14

Terminology
• Let be the set of decision values of configurations reachable from . VC C

14

Terminology
• Let be the set of decision values of configurations reachable from . VC C

• Say that is bivalent if . C |VC | = 2

14

Terminology
• Let be the set of decision values of configurations reachable from . VC C

• Say that is bivalent if . C |VC | = 2

• is univalent if . C |VC | = 1

14

Terminology
• Let be the set of decision values of configurations reachable from . VC C

• Say that is bivalent if . C |VC | = 2

• is univalent if . C |VC | = 1

• In particular, is -valent if . C i VC = {i}

14

15

15

Initial configuration C1

died dec 1 dec 1
dieddec 0 dec ?

All runs

15

Initial configuration C1

died dec 1 dec 1
dieddec 0 dec ?

 is bivalent assume Agreement.C1

All runs

15

Initial configuration C1

died dec 1 dec 1
dieddec 0 dec ?

Initial configuration C2

died dec 1 dec 1

dieddec ? dec ?

 is bivalent assume Agreement.C1

All runs

15

Initial configuration C1

died dec 1 dec 1
dieddec 0 dec ?

Initial configuration C2

died dec 1 dec 1

dieddec ? dec ?

 is bivalent assume Agreement.C1 is not 0-valent.C2

All runs

Terminology

16

Terminology

16

Bivalent

1-valent

0-valent

Terminology

16

Bivalent

1-valent

0-valent

Terminology

16

Bivalent

1-valent

0-valent

Terminology

16

Bivalent

1-valent

0-valent

Proof Sketch

17

Proof Sketch
• Proof by contradiction:

17

Proof Sketch
• Proof by contradiction:

• Assume is a totally correct in spite of one fault. Then we can prove: P

17

Proof Sketch
• Proof by contradiction:

• Assume is a totally correct in spite of one fault. Then we can prove: P

• Claim 1. There exists a bivalent initial configuration in . C P

17

Proof Sketch
• Proof by contradiction:

• Assume is a totally correct in spite of one fault. Then we can prove: P

• Claim 1. There exists a bivalent initial configuration in . C P

• Claim 2. Given a bivalent configuration and a step that is applicable to
, there is a schedule that applies in the last step and keeps the

configuration bivalent.

C e
C σ e

σ(C)

17

Proof Sketch
• Proof by contradiction:

• Assume is a totally correct in spite of one fault. Then we can prove: P

• Claim 1. There exists a bivalent initial configuration in . C P

• Claim 2. Given a bivalent configuration and a step that is applicable to
, there is a schedule that applies in the last step and keeps the

configuration bivalent.

C e
C σ e

σ(C)

• Claim 1 and Claim 2 implies there is an admissible run in that stays in
bivalent configuration, which contradicts with the total correctness.

P

17

Claim 1
There exists a bivalent initial configuration in . P

18

Claim 1
There exists a bivalent initial configuration in . P

• Assume not. Then by Non-triviality, the set of initial configurations in contains: P

18

Claim 1
There exists a bivalent initial configuration in . P

• Assume not. Then by Non-triviality, the set of initial configurations in contains: P

0-valent C0

All processes decide on 0

18

Claim 1
There exists a bivalent initial configuration in . P

• Assume not. Then by Non-triviality, the set of initial configurations in contains: P

0-valent C0

All processes decide on 0

1-valent C1

All processes decide on 1

18

Claim 1
There exists a bivalent initial configuration in . P

• Assume not. Then by Non-triviality, the set of initial configurations in contains: P

• Definition: Two initial configurations are adjacent if they only differ in one process.

0-valent C0

All processes decide on 0

1-valent C1

All processes decide on 1

18

Claim 1
There exists a bivalent initial configuration in . P

19

Claim 1
There exists a bivalent initial configuration in . P

init 0 init 1init 0

init 1 init 1init 0

Adjacent

19

Claim 1
There exists a bivalent initial configuration in . P

init 0 init 1init 0

init 1 init 1init 0

Adjacent

init 1 init 1init 1

Adjacent

19

Claim 1
There exists a bivalent initial configuration in . P

init 0 init 1init 0

init 1 init 1init 0

Adjacent

init 1 init 1init 1

Adjacent

Any two configurations can be connected by
a chain of adjacent configurations.

19

Claim 1
There exists a bivalent initial configuration in . P

0-valent C0 1-valent C1…
Adjacent Adjacent

20

Claim 1
There exists a bivalent initial configuration in . P

There exists adjacent in the chain connecting
 such that is 0-valent, is 1-valent.

C, C′

C0, C1 C C′

0-valent C0 1-valent C1…
Adjacent Adjacent

20

Claim 1
There exists a bivalent initial configuration in . P

21

Claim 1
There exists a bivalent initial configuration in . P

0-valent initial C 1-valent initial C′

P1 P3P2 P1 P3P2
Adjacent

21

Claim 1
There exists a bivalent initial configuration in . P

0-valent initial C 1-valent initial C′

P1 P3P2 P1 P3P2
Adjacent

P1 is never scheduled.

21

Claim 1
There exists a bivalent initial configuration in . P

0-valent initial C 1-valent initial C′

P1 P3P2 P1 P3P2
Adjacent

P1 is never scheduled.

21

Claim 1
There exists a bivalent initial configuration in . P

0-valent initial C 1-valent initial C′

P1 P3P2 P1 P3P2
Adjacent

P1 is never scheduled.

These two runs should be the
same: either both agree on 1,
or both agree on 0.

21

Claim 1
There exists a bivalent initial configuration in . P

0-valent initial C 1-valent initial C′

P1 P3P2 P1 P3P2
Adjacent

P1 is never scheduled.

These two runs should be the
same: either both agree on 1,
or both agree on 0.

Both agree on 1 contradiction with

21

Claim 1
There exists a bivalent initial configuration in . P

0-valent initial C 1-valent initial C′

P1 P3P2 P1 P3P2
Adjacent

P1 is never scheduled.

These two runs should be the
same: either both agree on 1,
or both agree on 0.

Both agree on 0 contradiction with Both agree on 1 contradiction with

21

There exists a schedule that preserves bivalence.
Claim 2

22

Lemma 1.

There exists a schedule that preserves bivalence.
Claim 2

22

Lemma 1.

If schedule and are both applicable to
the configuration and the set of
processes stepped in and are disjoint,

σ1 σ2
C

σ1 σ2

There exists a schedule that preserves bivalence.
Claim 2

22

Lemma 1.

If schedule and are both applicable to
the configuration and the set of
processes stepped in and are disjoint,

σ1 σ2
C

σ1 σ2

then and are also applicable to
 and they are equivalent.

σ1; σ2 σ2; σ1
C

There exists a schedule that preserves bivalence.
Claim 2

22

There exists a schedule that preserves bivalence.
Claim 2

23

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

23

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

Lemma 2.

23

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

Lemma 2.

If Claim 2 does not hold,

23

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent and two
steps operating on the same
process such that

C
e, e′

p

23

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent and two
steps operating on the same
process such that

C
e, e′

p

- is a -valent configuration.e(C) i

23

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent and two
steps operating on the same
process such that

C
e, e′

p

- is a -valent configuration.e(C) i

- is an -valent
configuration.
e(e′ (C)) (1 − i)

23

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent and two
steps operating on the same
process such that

C
e, e′

p

- is a -valent configuration.e(C) i

- is an -valent
configuration.
e(e′ (C)) (1 − i)

C

23

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent
e′

Lemma 2.

If Claim 2 does not hold,

then there exists a bivalent and two
steps operating on the same
process such that

C
e, e′

p

- is a -valent configuration.e(C) i

- is an -valent
configuration.
e(e′ (C)) (1 − i)

e
C

23

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

24

• Let be the set of configurations reachable from without applying . Let
.

ℰ C e
𝒟 = e(ℰ)

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

24

• Let be the set of configurations reachable from without applying . Let
.

ℰ C e
𝒟 = e(ℰ)

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

Bivalent C

ℰ

without e
step e

𝒟

24

• Let be the set of configurations reachable from without applying . Let
.

ℰ C e
𝒟 = e(ℰ)

• If there exists a bivalent configuration in , then Claim 2 holds.
Contradiction to the assumption! So there exists -valent .

C′ 𝒟
i Ei

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

Bivalent C

ℰ

without e
step e

𝒟

24

• Let be the set of configurations reachable from without applying . Let
.

ℰ C e
𝒟 = e(ℰ)

• If there exists a bivalent configuration in , then Claim 2 holds.
Contradiction to the assumption! So there exists -valent .

C′ 𝒟
i Ei

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

Bivalent C

ℰ

without e
step e

𝒟

1-valent
E1

0-valent
E0

24

• Let be the set of configurations reachable from without applying . Let
.

ℰ C e
𝒟 = e(ℰ)

• If there exists a bivalent configuration in , then Claim 2 holds.
Contradiction to the assumption! So there exists -valent .

C′ 𝒟
i Ei

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

Bivalent C

ℰ

without e
step e

𝒟

F1

F0

1-valent
E1

0-valent
E0

24

Exists -valent in i Fi 𝒟

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

25

• Skip some steps … we can prove that there exists

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

25

• Skip some steps … we can prove that there exists

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

𝒟
0-valent D0

1-valent D1

C0

C1

step e

step e
step e’

25

• Skip some steps … we can prove that there exists

• If and operate on different processors, then we can prove
, which implies . Impossible!

e e′

(e; e′)(C0) = (e′ ; e)(C0) D0 = D1

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

𝒟
0-valent D0

1-valent D1

C0

C1

step e

step e
step e’

25

• Skip some steps … we can prove that there exists

• If and operate on different processors, then we can prove
, which implies . Impossible!

e e′

(e; e′)(C0) = (e′ ; e)(C0) D0 = D1

• Lemma 2 proved!

Claim 2 (Proof for Lemma 2)
There exists a schedule that preserves bivalence.

𝒟
0-valent D0

1-valent D1

C0

C1

step e

step e
step e’

25

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e
C

26

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

Proof by Contradiction (again):

C

26

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

Proof by Contradiction (again):

Assume Claim 2 is not true, then by
Lemma 2, there exists a bivalent
and two steps as depicted in
the diagram and and both
operate on a process .

C
e, e′

e e′

pC

26

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

Proof by Contradiction (again):

Assume Claim 2 is not true, then by
Lemma 2, there exists a bivalent
and two steps as depicted in
the diagram and and both
operate on a process .

C
e, e′

e e′

pC

26

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e
C

27

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

There exists schedule that leads
to a consensus without stepping .

σ C
A p

C

27

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

There exists schedule that leads
to a consensus without stepping .

σ C
A p

By lemma 1, , so
 has to be 1-valent.

σ(e(C)) = e(σ(C))
e(σ(C))

C

27

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

There exists schedule that leads
to a consensus without stepping .

σ C
A p

By lemma 1, , so
 has to be 1-valent.

σ(e(C)) = e(σ(C))
e(σ(C))

C

σ
A

27

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

There exists schedule that leads
to a consensus without stepping .

σ C
A p

By lemma 1, , so
 has to be 1-valent.

σ(e(C)) = e(σ(C))
e(σ(C))

Similarly, ,
so has to be 0-valent.

σ(e(e′ (C))) = e(e′ (σ(C)))
e(e′ (σ(C)))

C

σ
A

27

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

There exists schedule that leads
to a consensus without stepping .

σ C
A p

By lemma 1, , so
 has to be 1-valent.

σ(e(C)) = e(σ(C))
e(σ(C))

Similarly, ,
so has to be 0-valent.

σ(e(e′ (C))) = e(e′ (σ(C)))
e(e′ (σ(C)))

C

σ
A

27

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

There exists schedule that leads
to a consensus without stepping .

σ C
A p

By lemma 1, , so
 has to be 1-valent.

σ(e(C)) = e(σ(C))
e(σ(C))

Similarly, ,
so has to be 0-valent.

σ(e(e′ (C))) = e(e′ (σ(C)))
e(e′ (σ(C)))

C

σ
A

27

e′

e

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

e′

A
σ

C

A

28

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

e′

A
σ

C

A

 has to be 1-valent implies
 cannot be 0-valent.

e(σ(C))
A = σ(C)

28

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

e′

A
σ

C

A

 has to be 1-valent implies
 cannot be 0-valent.

e(σ(C))
A = σ(C)

 has to be 0-valent implies
 cannot be 1-valent.

e(e′ (σ(C)))
A = σ(C)

28

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

e′

A
σ

C

A

 has to be 1-valent implies
 cannot be 0-valent.

e(σ(C))
A = σ(C)

 has to be 0-valent implies
 cannot be 1-valent.

e(e′ (σ(C)))
A = σ(C)

 has to be bivalent. A = σ(C)

28

There exists a schedule that preserves bivalence.
Claim 2

Bivalent

1-valent

0-valent

e

e′

A
σ

C

A

 has to be 1-valent implies
 cannot be 0-valent.

e(σ(C))
A = σ(C)

 has to be 0-valent implies
 cannot be 1-valent.

e(e′ (σ(C)))
A = σ(C)

 has to be bivalent. A = σ(C)

Claim 2 proved (with details omitted)!

28

Discussion

29

Review the Proof

Discussion

• Where did the proof use the condition that one process might be faulty?

29

Review the Proof

Discussion

• Where did the proof use the condition that one process might be faulty?

• Are there other implicit assumptions of the set of initial configurations in ?P

29

Review the Proof

Discussion

30

What are remedies for this impossibility results?

Discussion

• The authors considered a case where faulty processes are all dead from the
beginning and prove that there exists a system that satisfy partial
correctness (Agreement and Non-triviality).

30

What are remedies for this impossibility results?

Discussion

• The authors considered a case where faulty processes are all dead from the
beginning and prove that there exists a system that satisfy partial
correctness (Agreement and Non-triviality).

• What relaxations of the adversarial environment are effective?

• Is a totally correct protocol possible if the message is delivered in order?

30

What are remedies for this impossibility results?

Discussion

• The authors considered a case where faulty processes are all dead from the
beginning and prove that there exists a system that satisfy partial
correctness (Agreement and Non-triviality).

• What relaxations of the adversarial environment are effective?

• Is a totally correct protocol possible if the message is delivered in order?

• What enhancements of the processes would be effective?

• Is a totally correct protocol possible if the processes can detect the faulty
process?

30

What are remedies for this impossibility results?

