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Hyperproperties

• Hyperproperties: Properties of multiple program traces.

• Examples:
� Program Equivalence, e.g.,

I Commutativity (2-property): f (a, b) = f (b, a).
I Associativity (4-property): f (a, f (b, c)) = f (f (a, b), c).

2 / 30



Hyperproperties

• Hyperproperties: Properties of multiple program traces.

• Examples:
� Program Equivalence, e.g.,

I Commutativity (2-property): f (a, b) = f (b, a).
I Associativity (4-property): f (a, f (b, c)) = f (f (a, b), c).

2 / 30



Hyperproperties

• Hyperproperties: Properties of multiple program traces.

• Examples:
� Program Equivalence, e.g.,

I Commutativity (2-property): f (a, b) = f (b, a).
I Associativity (4-property): f (a, f (b, c)) = f (f (a, b), c).

2 / 30



Relational Hoare Logic (RHL)

Judgments are written as

{ } [1 : t1, 2 : t2] {�} ,

where  ,� are assertions on pairs of stores and t1, t2 are
programs. For example, let

• Store s1 with s1(x) = 0, s1(y) = 1;

• Store s2 with s2(x) = 0, s2(y) = 2.

Then, (s1, s2) |= xh1i = xh2i ^ yh1i+ 1 = yh2i.
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⊢



Relational Hoare Logic (RHL)

• Sample rules in standard RHL:

`
�
�[eh1i/xh1i, e0h2i/yh2i]

 ⇥
1 : x := e, 2 : y := e0

⇤
{�}

Assn

` {�} [1 : t1, 2 : t2]
�
�0 `

�
�0 ⇥

1 : t01, 2 : t02
⇤ �

�00 

` {�}
⇥
1 : t1; t

0
1, 2 : t2; t

0
2

⇤ �
�00 Seq

• Pros: Good when related programs has similar structure.

• Cons: Rigid in the number and the alignment of related

programs.
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Exploit the similar structures of related programs



Motivating Example

Consider a deterministic program op that is also commutative, i.e.,

` {>} [1 : r1 := op(a, b), 2 : r2 := op(b, a)] {r1h1i = r2h2i} (Commop)

How do we prove the following?

` {>}
"

1 : x := op(a, b); z := op(x , x),

2 : x := op(a, b); y := op(b, a); z := op(x , y)

#
{zh1i = zh2i}
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Derivation Sketch for Motivating Example

` {>}

2

64
1 : x := op(a, b),

2 : x := op(a, b); y := op(b, a)

3

75

(
xh1i = xh2i
xh1i = yh2i

)
F

Seq

` {>}
"

1 : x := op(a, b); z := op(x , x)

2 : x := op(a, b); y := op(b, a); z := op(x , y)

#
{zh1i = zh2i}

where F abbreviates

(
xh1i = xh2i
xh1i = yh2i

) "
1 : z := op(x , x)

2 : z := op(x , y)

#
{zh1i = zh2i}
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This Paper: Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.

Lockstep rules: wp-Seq, wp-Assn, wp-If. . .

Structural rules: wp-Frame, . . .

Proposes proof rules for aligning programs in new ways.

Hyper-structure rules: . . .

Proposes proof rules for moving between judgments relating

di↵erent number of programs.

Reindexing rules: . . .

8 / 30



Preliminaries

Programming language

• A minimal untyped imperative language:

E 3 g , e ::= v | x | ⇤ | e + e | e � e | e  e | . . .
T 3 t ::= skip | x := e | t; t | if g then t else t | while g : t

• Big-step semantics: for stores s, s 0 2 S,

ht, si + s 0 i↵ the execution from ht, si ends with hs 0i
ht, si + i↵ 9s 0, ht, si + s 0
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Preliminaries

Hyper-everything

• Hyper-program: a finite partial function t : I * T.
� [1 : t1, 2 : t2, . . . , n : tn]

• Hyper-store: a finite partial function s : I * S.
• Big-step semantics for hyper-programs: for hyperstores s, s0,

ht, si + s0 i↵ the execution from ht, si ends with s0

ht, si + i↵ 9s0, ht, si + s0

• Hyper-assertions map hyper-stores to Booleans.
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Preliminaries

Weakest Precondition

• Weakest pre-condition wp [t] {Q}:
� ` {P} [t] {Q} i↵ P |= wp [t] {Q}.
� Semantics definition:

wp [t] {Q} := �s.(8s0.ht, si + s0 =) Q(s0))

� Enables assertions to mention programs.
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Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.

Lockstep rules: wp-Seq, wp-Assn, wp-If. . .

Structural rules: wp-Frame, . . .

Proposes proof rules for aligning programs in new ways.

Hyper-structure rules: . . .

Proposes proof rules for moving between judgments relating

di↵erent number of programs.

Reindexing rules: . . .
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Lockstep Rules

Extensions of RHL Program Rules

Hoare-Seq

` {�} [1 : t1, 2 : t2]
�
�0 `

�
�0 ⇥

1 : t01, 2 : t02
⇤ �

�00 

` {�}
⇥
1 : t1; t

0
1, 2 : t2; t

0
2

⇤ �
�00 

LHC Rule: wp-Seq

wp [i : ti | i 2 I] {wp [i : t 0i | i 2 I] {Q}} a` wp [i : (ti ; t
0
i ) | i 2 I] {Q}

13 / 30



Structural Rules

Extensions of RHL Structural Rules

Hoare-Const

{�} [t] {Q} pvar(P) \mods(t) = ;
{P ^ �} [t] {P ^ Q}

pvar(P) , the set of (indexed) program variables occuring in P

mods(t) , the set of (indexed) program variables modified by t

LHC Rule: wp-Frame

` pvar(P) \mods(t) = ;
` P ^ wp [t] {Q} ` wp [t] {P ^ Q}
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Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.

Lockstep rules: wp-Seq, wp-Assn, wp-If. . .

Structural rules: wp-Frame, . . .

Proposes proof rules for aligning programs in new ways.

Hyper-structure rules: . . .

Proposes proof rules for moving between judgments relating

di↵erent number of programs.

Reindexing rules: . . .

15 / 30



Preliminaries

Definition (Union of hyper-programs)

Given hyper-programs f , g : I * T such that for any

i 2 supp(f ) \ supp(g), f (i) = g(i). Then the union of f and g ,

written f + g : I * T is defined as

(f + g)(i) =

8
><

>:

f (i) if i 2 supp(f ) \ supp(g)
g(i) if i 2 supp(g)

? otherwise
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Hyper-structural Rules

Novel Structural Rules for Hyper-programs

We write f · g , f + g if supp(f ) \ supp(g) = ;.

wp-Nest

wp [t1] {wp [t2] {Q}} a` wp [t1 · t2] {Q}

17 / 30
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Hyper-structural Rules

Novel Structural Rules for Hyper-programs

wp-Conj

idx(Q1) \ supp(t2) ✓ supp(t1) idx(Q2) \ supp(t1) ✓ supp(t2)

wp [t1] {Q1} ^wp [t2] {Q2} ` wp [t1 + t2] {Q1 ^ Q2}

where idx(P) , the set of indices that are relavant for P .
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Application on Motivating Example

Apply wp-Nest:

` wp [1 : x := op(a, b)]

(
wp

"
2 : x := op(a, b);

y := op(b, a)

# (
xh1i = xh2i
yh2i = xh1i

))

` wp

"
1 : x := op(a, b)

2 : x := op(a, b); y := op(b, a)

# (
xh1i = xh2i
yh2i = xh1i

)

19 / 30



Application on Motivating Example

Apply wp-Seq:

` wp [1 : x := op(a, b)]

(
wp [2 : x := op(a, b)]

(
wp [2 : y := op(b, a)]

(
xh1i = xh2i
yh2i = xh1i

)))

` wp [1 : x := op(a, b)]

(
wp

"
2 : x := op(a, b);

y := op(b, a)

# (
xh1i = xh2i
yh2i = xh1i

))
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Application on Motivating Example

Apply wp-Nest again:

` wp

"
1 : x := op(a, b)

2 : x := op(a, b)

# (
wp

h
2 : y := op(b, a)

i (
xh1i = xh2i
yh2i = xh1i

))

` wp [1 : x := op(a, b)]

(
wp [2 : x := op(a, b)]

(
wp [2 : y := op(b, a)]

(
xh1i = xh2i
yh2i = xh1i

)))
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Application on Motivating Example

Apply wp-Frame:

` wp

"
1 : x := op(a, b)

2 : x := op(a, b)

# n
xh1i = xh2i ^ wp

h
2 : y := op(b, a)

i n
yh2i = xh1i

oo

` wp

"
1 : x := op(a, b)

2 : x := op(a, b)

# (
wp

h
2 : y := op(b, a)

i (
xh1i = xh2i
yh2i = xh1i

))
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Application on Motivating Example

Apply wp-Conj:

` wp

"
1 : x := op(a, b)

2 : x := op(a, b)

# n
wp

h
2 : y := op(b, a)

i n
yh2i = xh1i

oo
F

` wp

"
1 : x := op(a, b)

2 : x := op(a, b)

# n
xh1i = xh2i ^ wp

h
2 : y := op(b, a)

i n
yh2i = xh1i

oo

where F is

` wp

"
1 : x := op(a, b)

2 : x := op(a, b)

#
{xh1i = xh2i}
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Application on Motivating Example

` wp

"
1 : x := op(a, b)

2 : y := op(b, a)

# n
yh2i = xh1i

o

WP-Cons

` wp
h

2 : x := op(a, b)
i (

wp

"
1 : x := op(a, b)

2 : y := op(b, a)

# n
yh2i = xh1i

o)

WP-Nest

` wp

"
1 : x := op(a, b)

2 : x := op(a, b)

# n
wp

h
2 : y := op(b, a)

i n
yh2i = xh1i

oo
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Application on Motivating Example

Putting everything together,
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Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.

Lockstep rules: wp-Seq, wp-Assn, wp-If. . .

Structural rules: wp-Frame, . . .

Proposes proof rules for aligning programs in new ways.

Hyper-structure rules: . . .

Proposes proof rules for moving between judgments relating

di↵erent number of programs.

Reindexing rules: . . .

26 / 30



Reindexing Rules

Reindexing rules tell us

• when it is possible to o✏oad some reasoning to another index.

• when reindexing of pre-conditions can be propagated to

post-conditions.

• when reindexing of hyper-programs can be propagated to

post-conditions.
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Questions

Extends RHL rules for n related programs.

Lockstep rules: wp-Seq, wp-Assn, wp-If. . .

Structural rules: wp-Frame, . . .

Proposes proof rules for aligning programs in new ways.

Hyper-structure rules: . . .

Proposes proof rules for moving between judgments relating

di↵erent number of programs.

Reindexing rules: . . .
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Motivating Reindexing Rules

Two encodings of idempotence:

` {~xh1i = ~xh2i} [1 : t, 2 : (t; t)] {~xh1i = ~xh2i} (IdemSeq)

` {~xh1i = ~v} [1 : t, 2 : t] {~xh1i = ~v =) ~xh2i = ~v} (Idem)

Q: Are they equally strong?

A: Idem together with Detop implies IdemSeq.

Q: How do we prove that?
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Motivating Reindexing Rules

A Proof Sketch

F

Idem

~xh3i = ~v ` wp [2 : t, 3 : t] {~xh2i = ~v =) ~xh3i = ~v}
...

` wp [2 : t] {9~v .~xh2i = ~v ^ ~xh3i = ~v ^wp [3 : t] {~x(3) = ~v}}
... We fork the store at 2 to 3 and o✏oad the reasoning to 3.

` wp [2 : t] {9~v .~xh2i = ~v ^wp [2 : t] {~x(2) = ~v}}
~xh1i = ~xh2i ` wp [1 : t, 2 : (t; t)] {~xh1i = ~xh2i}

where F is ~xh1i = ~xh2i ` wp [1 : t, 2 : t] {~xh1i = ~xh2i}.
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