Proving Hypersafety Compositionally Appeared on OOPSLA 2022

Emanuele D'Osualdo, Azadeh Farzan, Derek Dreyer MPI-SWS, University of Toronto, MPI-SWS

Presented by Jialu Bao, March 29th, 2023

Hyperproperties

- Hyperproperties: Properties of multiple program traces.

Hyperproperties

- Hyperproperties: Properties of multiple program traces.
- Examples:
- Program Equivalence, e.g.,

Hyperproperties

- Hyperproperties: Properties of multiple program traces.
- Examples:
- Program Equivalence, e.g.,
- Commutativity (2-property): $f(a, b)=f(b, a)$.
- Associativity (4-property): $f(a, f(b, c))=f(f(a, b), c)$.

Relational Hoare Logic (RHL)

Relational Hoare Logic (RHL)

Judgments are written as

$$
\vdash\{\Psi\}\left[1: t_{1}, 2: t_{2}\right]\{\Phi\},
$$

where Ψ, Φ are assertions on pairs of stores and t_{1}, t_{2} are programs.

Relational Hoare Logic (RHL)

Judgments are written as

$$
\vdash\{\Psi\}\left[1: t_{1}, 2: t_{2}\right]\{\Phi\},
$$

where Ψ, Φ are assertions on pairs of stores and t_{1}, t_{2} are programs. For example, let

- Store s_{1} with $s_{1}(x)=0, s_{1}(y)=1 ;$
- Store s_{2} with $s_{2}(x)=0, s_{2}(y)=2$.

Then, $\left(s_{1}, s_{2}\right) \models x\langle 1\rangle=x\langle 2\rangle \wedge y\langle 1\rangle+1=y\langle 2\rangle$.

F Ψ

Relational Hoare Logic (RHL)

- Sample rules in standard RHL:

$$
\overline{\vdash\left\{\Phi\left[e\langle 1\rangle / x\langle 1\rangle, e^{\prime}\langle 2\rangle / y\langle 2\rangle\right]\right\}\left[1: x:=e, 2: y:=e^{\prime}\right]\{\Phi\}} \mathrm{ASSN}
$$

Relational Hoare Logic (RHL)

- Sample rules in standard RHL:

$$
\begin{aligned}
& \stackrel{\vdash\left\{\Phi\left[e\langle 1\rangle / x\langle 1\rangle, e^{\prime}\langle 2\rangle / y\langle 2\rangle\right]\right\}\left[1: x:=e, 2: y:=e^{\prime}\right]\{\Phi\}}{ } \text { ASSN } \\
& \frac{\vdash\{\Phi\}\left[1: t_{1}, 2: t_{2}\right]\left\{\Phi^{\prime}\right\} \quad \vdash\left\{\Phi^{\prime}\right\}\left[1: t_{1}^{\prime}, 2: t_{2}^{\prime}\right]\left\{\Phi^{\prime \prime}\right\}}{\vdash\{\Phi\}\left[1: t_{1} ; t_{1}^{\prime}, 2: t_{2} ; t_{2}^{\prime}\right]\left\{\Phi^{\prime \prime}\right\}} \text { SEQ }
\end{aligned}
$$

Relational Hoare Logic (RHL)

- Sample rules in standard RHL:

$$
\begin{aligned}
& \stackrel{\vdash\left\{\Phi\left[e\langle 1\rangle / x\langle 1\rangle, e^{\prime}\langle 2\rangle / y\langle 2\rangle\right]\right\}\left[1: x:=e, 2: y:=e^{\prime}\right]\{\Phi\}}{ } \text { ASSN } \\
& \frac{\vdash\{\Phi\}\left[1: t_{1}, 2: t_{2}\right]\left\{\Phi^{\prime}\right\} \quad \vdash\left\{\Phi^{\prime}\right\}\left[1: t_{1}^{\prime}, 2: t_{2}^{\prime}\right]\left\{\Phi^{\prime \prime}\right\}}{\vdash\{\Phi\}\left[1: t_{1} ; t_{1}^{\prime}, 2: t_{2} ; t_{2}^{\prime}\right]\left\{\Phi^{\prime \prime}\right\}} \text { SEQ }
\end{aligned}
$$

- Pros: Exploit the similar structures of related programs
- Cons: Rigid in the number and the alignment of related programs.

Motivating Example

Consider a deterministic program op that is also commutative, i.e.,

$$
\vdash\{T\}\left[1: r_{1}:=o p(a, b), 2: r_{2}:=o p(b, a)\right]\left\{r_{1}\langle 1\rangle=r_{2}\langle 2\rangle\right\} \quad\left(\operatorname{Comm}_{o p}\right)
$$

Motivating Example

Consider a deterministic program op that is also commutative, i.e.,

$$
\vdash\{T\}\left[1: r_{1}:=o p(a, b), 2: r_{2}:=o p(b, a)\right]\left\{r_{1}\langle 1\rangle=r_{2}\langle 2\rangle\right\} \quad\left(\operatorname{Comm}_{o p}\right)
$$

How do we prove the following?

$$
\vdash\{T\}\left[\begin{array}{l}
1: x:=o p(a, b) ; z:=o p(x, x), \\
2: x:=o p(a, b) ; y:=o p(b, a) ; z:=o p(x, y)
\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}
$$

Derivation Sketch for Motivating Example

Derivation Sketch for Motivating Example

Seq $\frac{\vdash\{T\}\left[\begin{array}{l}1: x:=o p(a, b), \\ 2: x:=o p(a, b) ; y:=o p(b, a)\end{array}\right]\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ x\langle 1\rangle=y\langle 2\rangle\end{array}\right\} \star}{\vdash\{\top\}\left[\begin{array}{l}1: x:=o p(a, b) ; z:=o p(x, x) \\ 2: x:=o p(a, b) ; y:=o p(b, a) ; z:=o p(x, y)\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}}$
where \star abbreviates $\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ x\langle 1\rangle=y\langle 2\rangle\end{array}\right\}\left[\begin{array}{l}1: z:=o p(x, x) \\ 2: z:=o p(x, y)\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}$

Derivation Sketch for Motivating Example

$$
\begin{gathered}
\qquad \text { ? } \\
\qquad\{T\}\left[\begin{array}{l}
1: x:=o p(a, b), \\
2: x:=o p(a, b) ; y:=o p(b, a)
\end{array}\right]\left\{\begin{array}{l}
x\langle 1\rangle=x\langle 2\rangle \\
x\langle 1\rangle=y\langle 2\rangle
\end{array}\right\} \quad \star \\
\vdash\{\top\}\left[\begin{array}{l}
1: x:=o p(a, b) ; z:=o p(x, x) \\
2: x:=o p(a, b) ; y:=o p(b, a) ; z:=o p(x, y)
\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}
\end{gathered}
$$

where \star abbreviates $\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ x\langle 1\rangle=y\langle 2\rangle\end{array}\right\}\left[\begin{array}{l}1: z:=o p(x, x) \\ 2: z:=o p(x, y)\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}$

Derivation Sketch for Motivating Example

$$
\begin{gathered}
\qquad \text { ? } \\
\qquad\{T\}\left[\begin{array}{l}
1: x:=o p(a, b), \\
2: x:=o p(a, b) ; y:=o p(b, a)
\end{array}\right]\left\{\begin{array}{l}
x\langle 1\rangle=x\langle 2\rangle \\
x\langle 1\rangle=y\langle 2\rangle
\end{array}\right\} \quad \star \\
\vdash\{\top\}\left[\begin{array}{l}
1: x:=o p(a, b) ; z:=o p(x, x) \\
2: x:=o p(a, b) ; y:=o p(b, a) ; z:=o p(x, y)
\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}
\end{gathered}
$$

where \star abbreviates $\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ x\langle 1\rangle=y\langle 2\rangle\end{array}\right\}\left[\begin{array}{l}1: z:=o p(x, x) \\ 2: z:=o p(x, y)\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}$

Derivation Sketch for Motivating Example

$$
\begin{aligned}
& \qquad \text { ? } \\
& \vdash\{\top\}\left[\begin{array}{l}
1: x:=o p(a, b), \\
2: x:=o p(a, b) ; y:=o p(b, a)
\end{array}\right]\left\{\begin{array}{l}
x\langle 1\rangle=x\langle 2\rangle \\
x\langle 1\rangle=y\langle 2\rangle
\end{array}\right\} \\
& \vdash\{\top\}\left[\begin{array}{l}
1: x:=o p(a, b) ; z:=o p(x, x) \\
2: x:=o p(a, b) ; y:=o p(b, a) ; z:=o p(x, y)
\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}
\end{aligned}
$$

where \star abbreviates $\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ x\langle 1\rangle=y\langle 2\rangle\end{array}\right\}\left[\begin{array}{l}1: z:=o p(x, x) \\ 2: z:=o p(x, y)\end{array}\right]\{z\langle 1\rangle=z\langle 2\rangle\}$

This Paper: Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.
Lockstep rules: WP-SEQ, WP-ASSN, WP-IF...
Structural rules: WP-Frame, ...

Proposes proof rules for aligning programs in new ways.
Hyper-structure rules: ...

Proposes proof rules for moving between judgments relating different number of programs.

Reindexing rules: ...

Preliminaries

Programming language

Preliminaries

Programming language

- A minimal untyped imperative language:

$$
\mathbb{E} \ni g, e::=v|x| *|e+e| e-e|e \leq e| \ldots
$$

$$
\mathbb{T} \ni t::=\mathbf{s k i p}|x:=e| t ; t \mid \text { if } g \text { then } t \text { else } t \mid \text { while } g: t
$$

Preliminaries

Programming language

- A minimal untyped imperative language:

$$
\begin{aligned}
\mathbb{E} \ni g, e & ::=v|x| *|e+e| e-e|e \leq e| \ldots \\
\mathbb{T} \ni t & ::=\text { skip }|x:=e| t ; t \mid \text { if } g \text { then } t \text { else } t \mid \text { while } g: t
\end{aligned}
$$

- Big-step semantics: for stores $s, s^{\prime} \in \mathbb{S}$,

$$
\begin{aligned}
& \langle t, s\rangle \Downarrow s^{\prime} \text { iff the execution from }\langle t, s\rangle \text { ends with } s^{\prime} \\
& \langle t, s\rangle \Downarrow \text { iff } \exists s^{\prime},\langle t, s\rangle \Downarrow s^{\prime}
\end{aligned}
$$

Preliminaries

Hyper-everything

Preliminaries

Hyper-everything

- Hyper-program: a finite partial function $\mathbf{t}: \mathbb{I} \rightharpoonup \mathbb{T}$.
- $\left[1: t_{1}, 2: t_{2}, \ldots, n: t_{n}\right]$

Preliminaries

Hyper-everything

- Hyper-program: a finite partial function $\mathbf{t}: \mathbb{I} \rightharpoonup \mathbb{T}$.
- $\left[1: t_{1}, 2: t_{2}, \ldots, n: t_{n}\right]$
- Hyper-store: a finite partial function $\mathbf{s}: \mathbb{I} \rightharpoonup \mathbb{S}$.

Preliminaries

Hyper-everything

- Hyper-program: a finite partial function $\mathbf{t}: \mathbb{I} \rightharpoonup \mathbb{T}$.
- $\left[1: t_{1}, 2: t_{2}, \ldots, n: t_{n}\right]$
- Hyper-store: a finite partial function $\mathbf{s}: \mathbb{I} \rightharpoonup \mathbb{S}$.
- Big-step semantics for hyper-programs: for hyperstores $\mathbf{s}, \mathbf{s}^{\prime}$,
$\langle\mathbf{t}, \mathbf{s}\rangle \Downarrow \mathbf{s}^{\prime}$ iff the execution from $\langle\mathbf{t}, \mathbf{s}\rangle$ ends with \mathbf{s}^{\prime}
$\langle\mathbf{t}, \mathbf{s}\rangle \Downarrow$ iff $\exists \mathbf{s}^{\prime},\langle\mathbf{t}, \mathbf{s}\rangle \Downarrow \mathbf{s}^{\prime}$

Preliminaries

Hyper-everything

- Hyper-program: a finite partial function $\mathbf{t}: \mathbb{I} \rightharpoonup \mathbb{T}$.
- $\left[1: t_{1}, 2: t_{2}, \ldots, n: t_{n}\right]$
- Hyper-store: a finite partial function $\mathbf{s}: \mathbb{I} \rightharpoonup \mathbb{S}$.
- Big-step semantics for hyper-programs: for hyperstores $\mathbf{s}, \mathbf{s}^{\prime}$,

$$
\begin{aligned}
& \langle\mathbf{t}, \mathbf{s}\rangle \Downarrow \mathbf{s}^{\prime} \text { iff the execution from }\langle\mathbf{t}, \mathbf{s}\rangle \text { ends with } \mathbf{s}^{\prime} \\
& \langle\mathbf{t}, \mathbf{s}\rangle \Downarrow \text { iff } \exists \mathbf{s}^{\prime},\langle\mathbf{t}, \mathbf{s}\rangle \Downarrow \mathbf{s}^{\prime}
\end{aligned}
$$

- Hyper-assertions map hyper-stores to Booleans.

Preliminaries

Weakest Precondition

Preliminaries

Weakest Precondition

- Weakest pre-condition wp $[\mathbf{t}]\{Q\}$:

$$
\circ \vdash\{P\}[\mathbf{t}]\{Q\} \text { iff } P \models \mathbf{w p}[\mathbf{t}]\{Q\} .
$$

Preliminaries

Weakest Precondition

- Weakest pre-condition wp $[\mathbf{t}]\{Q\}$:
$\circ \vdash\{P\}[\mathbf{t}]\{Q\}$ iff $P \models \mathbf{w p}[\mathbf{t}]\{Q\}$.
- Semantics definition:

$$
\mathbf{w p}[\mathbf{t}]\{Q\}:=\lambda \mathbf{s} .\left(\forall \mathbf{s}^{\prime} .\langle\mathbf{t}, \mathbf{s}\rangle \Downarrow \mathbf{s}^{\prime} \Longrightarrow Q\left(\mathbf{s}^{\prime}\right)\right)
$$

- Enables assertions to mention programs.

Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.
Lockstep rules: WP-SEQ, WP-ASSN, WP-IF...
Structural rules: WP-Frame, ...

Proposes proof rules for aligning programs in new ways. Hyper-structure rules:

Proposes proof rules for moving between judgments relating
different number of programs.
Reindexing rules:

Lockstep Rules

Extensions of RHL Program Rules

Structural Rules

Extensions of RHL Structural Rules

Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs. Lockstep rules: WP-SEQ, WP-ASSN, WP-IF... Structural rules: WP-FRAME,

Proposes proof rules for aligning programs in new ways.
Hyper-structure rules: ...

Proposes proof rules for moving between judgments relating
different number of programs.
Reindexing rules:

Preliminaries

Definition (Union of hyper-programs)

Given hyper-programs $f, g: \mathbb{I} \rightharpoonup \mathbb{T}$ such that for any
$i \in \operatorname{supp}(f) \cap \operatorname{supp}(g), f(i)=g(i)$. Then the union of f and g, written $f+g: \mathbb{I} \rightharpoonup \mathbb{T}$ is defined as

$$
(f+g)(i)= \begin{cases}f(i) & \text { if } i \in \operatorname{supp}(f) \backslash \operatorname{supp}(g) \\ g(i) & \text { if } i \in \operatorname{supp}(g) \\ \perp & \text { otherwise }\end{cases}
$$

Hyper-structural Rules

Novel Structural Rules for Hyper-programs

Hyper-structural Rules

Novel Structural Rules for Hyper-programs

Application on Motivating Example

Apply wp-Nest:
$\frac{\vdash \mathbf{w p}[1: x:=o p(a, b)]\left\{\mathbf{w p}\left[\begin{array}{r}2: x:=o p(a, b) ; \\ y:=o p(b, a)\end{array}\right]\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ y\langle 2\rangle=x\langle 1\rangle\end{array}\right\}\right\}}{\vdash \mathbf{w p}\left[\begin{array}{l}1: x:=o p(a, b) \\ 2: x:=o p(a, b) ; y:=o p(b, a)\end{array}\right]\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ y\langle 2\rangle=x\langle 1\rangle\end{array}\right\}}$

Application on Motivating Example

Apply WP-SEQ:

$$
\frac{\vdash \mathbf{w p}[1: x:=o p(a, b)]\left\{\mathbf{w p}[2: x:=o p(a, b)]\left\{\mathbf{w p}[2: y:=o p(b, a)]\left\{\begin{array}{l}
x\langle 1\rangle=x\langle 2\rangle \\
y\langle 2\rangle=x\langle 1\rangle
\end{array}\right\}\right\}\right.}{\qquad \mathbf{w p}^{2}[1: x:=o p(a, b)]\left\{\mathbf{w p}\left[\begin{array}{r}
2: x:=o p(a, b) ; \\
y:=o p(b, a)
\end{array}\right]\left\{\begin{array}{l}
x\langle 1\rangle=x\langle 2\rangle \\
y\langle 2\rangle=x\langle 1\rangle
\end{array}\right\}\right\}}
$$

Application on Motivating Example

Apply WP-Nest again:
$\vdash \mathbf{w p}\left[\begin{array}{l}1: x:=o p(a, b) \\ 2: x:=o p(a, b)\end{array}\right]\left\{\mathbf{w p}[2: y:=o p(b, a)]\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ y\langle 2\rangle=x\langle 1\rangle\end{array}\right\}\right\}$
$\vdash \mathbf{w p}[1: x:=o p(a, b)]\left\{\mathbf{w p}[2: x:=o p(a, b)]\left\{\mathbf{w p}[2: y:=o p(b, a)]\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ y\langle 2\rangle=x\langle 1\rangle\end{array}\right\}\right\}\right.$

Application on Motivating Example

Apply wp-Frame:
$\frac{\vdash \mathbf{w p}\left[\begin{array}{l}1: x:=o p(a, b) \\ 2: x:=o p(a, b)\end{array}\right]\{x\langle 1\rangle=x\langle 2\rangle \wedge \mathbf{w p}[2: y:=o p(b, a)]\{y\langle 2\rangle=x\langle 1\rangle\}\}}{\vdash \mathbf{w p}\left[\begin{array}{l}1: x:=o p(a, b) \\ 2: x:=o p(a, b)\end{array}\right]\left\{\mathbf{w p}[2: y:=o p(b, a)]\left\{\begin{array}{l}x\langle 1\rangle=x\langle 2\rangle \\ y\langle 2\rangle=x\langle 1\rangle\end{array}\right\}\right\}}$

Application on Motivating Example

Apply wp-Conj:

$$
\frac{\vdash \mathbf{w p}\left[\begin{array}{l}
1: x:=o p(a, b) \\
2: x:=o p(a, b)
\end{array}\right]\{\mathbf{w p}[2: y:=o p(b, a)]\{y\langle 2\rangle=x\langle 1\rangle\}\} \star}{\vdash \mathbf{w p}\left[\begin{array}{l}
1: x:=o p(a, b) \\
2: x:=o p(a, b)
\end{array}\right]\{x\langle 1\rangle=x\langle 2\rangle \wedge \mathbf{w p}[2: y:=o p(b, a)]\{y\langle 2\rangle=x\langle 1\rangle\}\}}
$$

where \star is

$$
\vdash \mathbf{w p}\left[\begin{array}{l}
1: x:=o p(a, b) \\
2: x:=o p(a, b)
\end{array}\right]\{x\langle 1\rangle=x\langle 2\rangle\}
$$

Application on Motivating Example

WP-Cons $\frac{\qquad \mathbf{w p}\left[\begin{array}{l}1: x:=o p(a, b) \\ 2: y:=o p(b, a)\end{array}\right]\{y\langle 2\rangle=x\langle 1\rangle\}}{\vdash \mathbf{w p}[2: x:=o p(a, b)]\left\{\mathbf{w p}\left[\begin{array}{l}1: x:=o p(a, b) \\ 2: y:=o p(b, a)\end{array}\right]\{y\langle 2\rangle=x\langle 1\rangle\}\right\}}$

Application on Motivating Example

Putting everything together,

$$
\begin{aligned}
& +\mathbf{w p}\left[\begin{array}{l}
1: x:=\operatorname{op}(a, b) \\
2: y:=\operatorname{op}(b, a)
\end{array}\right]\{y(2)=x(1)\} \\
& \frac{\vdash \mathbf{w p}[2: \mathrm{x}:=\operatorname{op}(a, b)]\left\{\mathbf{w p}\left[\begin{array}{l}
1: \mathrm{x}:=\mathrm{op}(a, b) \\
2: \mathrm{y}:=\mathrm{op}(b, a)
\end{array}\right]\{\mathrm{y}(2)=\mathrm{x}(1)\}\right\}}{\text { wp-cons }} \text {. } \text { wp-NEST }_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \vdash \mathbf{w p}[1: \mathrm{x}:=\mathrm{op}(a, b)]\{\mathbf{w p}[2: \mathrm{x}:=\mathrm{op}(a, b)]\{\mathrm{wp}[2: \mathrm{y}:=\mathrm{op}(b, a)]\{\mathrm{x}(1)=\mathrm{x}(2) \wedge \mathrm{y}(2)=\mathrm{x}(1)\}\}\} \\
& \vdash \mathbf{w p}[1: \mathrm{x}:=\mathrm{op}(a, b)]\{\mathbf{w p}[2: \mathrm{x}:=\mathrm{op}(a, b) ; \mathrm{y}:=\mathrm{op}(b, a)]\{\mathrm{x}(1)=\mathrm{x}(2) \wedge \mathrm{y}(2)=\mathrm{x}(1)\}\} \\
& \vdash \mathbf{w p}\left[\begin{array}{l}
1: \mathrm{x}:=\operatorname{op}(a, b) \\
2: \mathrm{x}:=\operatorname{op}(a, b) ; \mathrm{y}:=\operatorname{op}(b, a)
\end{array}\right]\left\{\begin{array}{l}
\mathrm{x}(1)=\mathrm{x}(2) \\
\mathrm{y}(2)=\mathrm{x}(1)
\end{array}\right\}
\end{aligned}
$$

Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.
Lockstep rules: WP-SEQ, WP-AsSN, WP-If. Structural rules: WP-FRAME,

Proposes proof rules for aligning programs in new ways. Hyper-structure rules:

Proposes proof rules for moving between judgments relating different number of programs.

Reindexing rules: ...

Reindexing Rules

Reindexing rules tell us

- when it is possible to offload some reasoning to another index.
- when reindexing of pre-conditions can be propagated to post-conditions.
- when reindexing of hyper-programs can be propagated to post-conditions.

Questions

Extends RHL rules for n related programs.
Lockstep rules: WP-SEQ, WP-Assn, WP-IF...
Structural rules: WP-Frame, ...

Proposes proof rules for aligning programs in new ways.
Hyper-structure rules: ...

Proposes proof rules for moving between judgments relating different number of programs.

Reindexing rules: ...

Motivating Reindexing Rules

Two encodings of idempotence:

$$
\begin{aligned}
& \vdash\{\vec{x}\langle 1\rangle=\vec{x}\langle 2\rangle\} \quad[1: t, 2:(t ; t)] \quad\{\vec{x}\langle 1\rangle=\vec{x}\langle 2\rangle\} \quad \text { (IDEMSEQ) } \\
& \vdash\{\vec{x}\langle 1\rangle=\vec{v}\}[1: t, 2: t]\{\vec{x}\langle 1\rangle=\vec{v} \Longrightarrow \vec{x}\langle 2\rangle=\vec{v}\} \quad \text { (IDEM) }
\end{aligned}
$$

Q: Are they equally strong?
A: Idem together with Det $_{o p}$ implies IdemSeq.
Q: How do we prove that?

Motivating Reindexing Rules

A Proof Sketch

IDEM

$$
\vec{x}\langle 3\rangle=\vec{v} \vdash \mathbf{w p}[2: t, 3: t]\{\vec{x}\langle 2\rangle=\vec{v} \Longrightarrow \vec{x}\langle 3\rangle=\vec{v}\}
$$

$\vdash \mathbf{w p}[2: t]\{\exists \vec{v} \cdot \vec{x}\langle 2\rangle=\vec{v} \wedge \vec{x}\langle 3\rangle=\vec{v} \wedge \mathbf{w p}[3: \mathbf{t}]\{\vec{x}(3)=\vec{v}\}\}$
\vdots We fork the store at 2 to 3 and offload the reasoning to 3 .

$\boldsymbol{\star}$	$\vdash \mathbf{w p}[2: t]\{\exists \vec{v} \cdot \vec{x}\langle 2\rangle=\vec{v} \wedge \mathbf{w p}[2: \mathbf{t}]\{\vec{x}(2)=\vec{v}\}\}$
$\vec{x}\langle 1\rangle$	$=\vec{x}\langle 2\rangle \vdash \mathbf{w p}[1: t, 2:(t ; t)]\{\vec{x}\langle 1\rangle=\vec{x}\langle 2\rangle\}$

where $\boldsymbol{\star}$ is $\vec{x}\langle 1\rangle=\vec{x}\langle 2\rangle \vdash \mathbf{w p}[1: t, 2: t]\{\vec{x}\langle 1\rangle=\vec{x}\langle 2\rangle\}$.

