Proving Hypersafety Compositionally
Appeared on OOPSLA 2022

Emanuele D'Osualdo, Azadeh Farzan, Derek Dreyer
MPI-SWS, University of Toronto, MPI-SWS

Presented by Jialu Bao, March 29th, 2023

1/30

Hyperproperties

e Hyperproperties: Properties of multiple program traces.

2 /30

Hyperproperties

e Hyperproperties: Properties of multiple program traces.

e Examples:

o Program Equivalence, e.g.,

2 /30

Hyperproperties

e Hyperproperties: Properties of multiple program traces.

e Examples:
o Program Equivalence, e.g.,

» Commutativity (2-property): f(a, b) = f(b, a).
» Associativity (4-property): f(a, f(b,c)) = f(f(a, b), c).

2 /30

Relational Hoare Logic (RHL)

3/30

Relational Hoare Logic (RHL)

Judgments are written as

- {\U} [1Zt1,22t2] {CD},

where W, ® are assertions on pairs of stores and ti, to are
programs.

3/30

Relational Hoare Logic (RHL)

Judgments are written as

- {\U} [1Zt1,22t2] {CD},

where VW, ® are assertions on pairs of stores and tj, ty are
programs. For example, let

e Store s; with s1(x) =0, si(y) = 1;

]
e Store s, with s3(x) =0, s2(y) = 2.
Then, (s1,5) = x{(1) = x(2) Ay(1) + 1 = y(2).
7
FY F D

3/30

Relational Hoare Logic (RHL)

e Sample rules in standard RHL:

ASSN

H {®e(1)/x(1),e' (2)/y(2)]} [1:x:=e, 2:y:=¢€"| {®}

4/30

Relational Hoare Logic (RHL)

e Sample rules in standard RHL:

ASSN

H {®e(1)/x(1),e' (2)/y(2)]} [1:x:=e, 2:y:=¢€"| {®}

F{®o} [1:t, 2: 8] {®'} H{®'} [1:t, 2:8] {®"}

SEQ
- {0} [L:t;t], 20t t5] {®)

4/30

Relational Hoare Logic (RHL)

e Sample rules in standard RHL:

ASSN

H {®e(1)/x(1),e' (2)/y(2)]} [1:x:=e, 2:y:=¢€"| {®}

F{®o} [1:t, 2: 8] {®'} H{®'} [1:t, 2:8] {®"}

/ / /! SEQ
— {(b} [1 1y tq, 2 : io; tz] {(b }
s Exploit the similar structures of related programs
o Rigid in the number and the alignment of related
programs.

4 /30

Motivating Example

Consider a deterministic program op that is also commutative, i.e.,

F{T} [1:n:=o0p(a,b), 2: rn:=op(b,a)l {n(l) =n(2)} (Commyyp)

5 /30

Motivating Example

Consider a deterministic program op that is also commutative, i.e.,

F{T} [1:n:=o0p(a,b), 2: rn:=op(b,a)l {n(l) =n(2)}

How do we prove the following?

aRun;

1ixi= op(a, b); z := op(x, x),

21X = op(a, b);y = Op(b, a); Z .= OP(Xa)/)

(Commyyp)

5 /30

Derivation Sketch for Motivating Example

6 /30

Derivation Sketch for Motivating Example

1 . x .= op(a, b),] B
EE I
| 2:x:=op(a,b);y :=op(b,a) |
] o op(arbyiz = oplo
. x := op(a, b); z := op(x, x
i | 2:ix:= op(a,b);y := op(b,a); z := op(x, y) | 12(1) = 2(2);
ere % abbreviates x(1) = x(2) lizis op(x, x) _ z z
where - abbreviat {x<1>=,v<2> } 2:zi=op(ny) | U TE

6 /30

Derivation Sketch for Motivating Example

?
1 . x .= op(a, b),] B
EEE
| 2:x:=op(a,b);y :=op(b,a) |
B (2.b)i 2 = op(x.)
l:x:=o0pla,b),z .= op(x,x
- | 2:ixi= op(a,b);y := op(b,a); z := op(x, y)] 12(1) = 2(2);
where % abbreviates { x{1) zx<2> } Lizi=opbox) | o0y pon

2:z:=op(x,y)

7/30

Derivation Sketch for Motivating Example

?
1 . x .= op(a, b),] B
EEE
| 2:x:=op(a,b);y :=op(b,a) |
B (2.b)i 2 = op(x.)
l:x:=o0pla,b),z .= op(x,x
- | 2:ixi= op(a,b);y := op(b,a); z := op(x, y)] 12(1) = 2(2);
where % abbreviates { x{1) zx<2> } Lizi=opbox) | o0y pon

2:z:=op(x,y)

7/30

Derivation Sketch for Motivating Example

?
1 . x .= op(a, b),] B
EEE
| 2:x:=op(a,b);y :=op(b,a) |
B (2.b)i 2 = op(x.)
l:x:=o0pla,b),z .= op(x,x
- | 2:ixi= op(a,b);y := op(b,a); z := op(x, y)] 12(1) = 2(2);
where % abbreviates { x{1) zx<2> } Lizi=opbox) | o0y pon

2:z:=op(x,y)

7/30

This Paper: Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.
Lockstep rules: WP-SEQ, WP-ASSN, WP-IF. ..
Structural rules: WP-FRAME, ...

Proposes proof rules for aligning programs in new ways.

Hyper-structure rules: . ..

Proposes proof rules for moving between judgments relating
different number of programs.

Reindexing rules: ...

8 /30

Preliminaries

Programming language

9/30

Preliminaries

Programming language

e A minimal untyped imperative language:

E>g,ei=v|x|x|letele—e|lele]...

Tt =skip|x:=e|t;t]|if gthentelset|while g:t

9/30

Preliminaries

Programming language

e A minimal untyped imperative language:

E>g,ei=v|x|x|letele—e|lele]...

Tt =skip|x:=e|t;t]|if gthentelset|while g:t

e Big-step semantics: for stores s,s’ € S,

(t,s) |} s" iff the execution from (t,s) ends with s’

L iff 35, (t,s) |

N
~
n

~_
/

<

9/30

Preliminaries
Hyper-everything

10/ 30

Preliminaries
Hyper-everything

e Hyper-program: a finite partial function t : I — T.
o [1:t1,2:t,...,n: t,]

10/ 30

Preliminaries
Hyper-everything

e Hyper-program: a finite partial function t : I — T.
o [1:t1,2:t,...,n: t,]

e Hyper-store: a finite partial functions: I — 5.

10/ 30

Preliminaries
Hyper-everything

e Hyper-program: a finite partial function t : I — T.
o [1:t1,2:t,...,n:t,]

e Hyper-store: a finite partial functions: I — 5.

e Big-step semantics for hyper-programs: for hyperstores s, s/,

| s" iff the execution from (t,s) ends with s’

L iff 38, (t,s) | §

S
=+
()

~_

S
=+
wnn

~_—

10/ 30

Preliminaries
Hyper-everything

e Hyper-program: a finite partial function t : I — T.
o [1:t1,2:t,...,n:t,]

e Hyper-store: a finite partial functions: I — 5.

e Big-step semantics for hyper-programs: for hyperstores s, s/,

| s" iff the execution from (t,s) ends with s’

L iff 38, (t,s) | §

S
=+
()

~_

S
=+
wnn

~_—

e Hyper-assertions map hyper-stores to Booleans.

10/ 30

Preliminaries

Weakest Precondition

11/30

Preliminaries

Weakest Precondition

e Weakest pre-condition wp [t] {Q}:
o F{P} [t] {Q} iff P =wp [t] {Q}.

11/30

Preliminaries

Weakest Precondition

e Weakest pre-condition wp [t] {Q}:
o F{P} [t] {Q} iff P =wp [t] {Q}.

o Semantics definition:

wp [t] {Q} = Xs.(Vs'.(t,s) || s = Q(s'))

o Enables assertions to mention programs.

11/30

Logic for Hyper-triple Composition (LHC)

Extends RHL rules for n related programs.
Lockstep rules: WP-SEQ, WP-ASSN, WP-IF. ..
Structural rules: WP-FRAME, ...

12 /30

Lockstep Rules

Extensions of RHL Program Rules

13 /30

Structural Rules
Extensions of RHL Structural Rules

14 /30

Logic for Hyper-triple Composition (LHC)

Proposes proof rules for aligning programs in new ways.

Hyper-structure rules: . ..

15 / 30

Preliminaries

Definition (Union of hyper-programs)

Given hyper-programs f, g : I — T such that for any

i € supp(f) Nsupp(g), f(i) = g(i). Then the union of f and g,
written f + g : I — T is defined as

f(i) ifiesupp(f)\ supp(g)

(f +g)(i)=14 g(i) ifiesupp(g)
1 otherwise

16 / 30

Hyper-structural Rules

Novel Structural Rules for Hyper-programs

“1 Bl

17 / 30

Hyper-structural Rules

Novel Structural Rules for Hyper-programs

Application on Motivating Example

Apply WP-NEST:

2:x = op(a, b); _

- wp [1 X = Op(37 b)] {Wp y = op(b a) { ;g; zi }}
w 1:x = op(a, b)- [(L) =x(2)
- wp | 2:x:= op(a, b);y := op(b, a) _ { (2) = x{1) }

19 /30

Application on Motivating Example

Apply WP-SEQ:

—wp [1:x:=op(a,b)] {wp [2: x := op(a, b)] {wp [2:y := op(b,a)]

- wp [1:x:=op(a,b)] {wp [2:x:=op(a,b); } { x(1)

Yy = Op(b7 a)

20 /30

Application on Motivating Example

Apply WP-NEST again:

; i izp(a’b) } {Wp [2:y:=op(b,a)] { x(1)

- wp
p(a, b)

—wp [1:x:= op(a,b)] {wp [2: x := op(a, b)] {wp [2:y := op(b,a)]

21/30

Application on Motivating Example

Apply WP-FRAME:

1:x:=op(a,b)

opab) | [T, [x=x@
op(a, b)] { P [2:y = op(b,2) } { y(2) = x(1) }}

1:x
I_
WP |:2ZXZ

22 /30

Application on Motivating Example

Apply wp-CONJ:

| SO0 [2o | { =} w

- wp { S Zggz:g } Ity =x@ Awp [2:y:=op(b,a) | { y@) =x(1) }}

where Y iIs

1: x:

|_
o]}

1.l
O]
kS]
—~~
\.QJ
o
N
| I— |
~
X
s
|—l
~—
|
X
S
N
~—
—

23 /30

Application on Motivating Example

o | T me | e)

WP-CONS o] - x i op(a. b) } {wp 1 x = op(a, b) } { y(2) = x(1) }}
R ’ 2:y:=op(b,a)
WP-NEST - i
o [1200] g [2y | { -)]

24 /30

Application on Motivating Example

Putting everything together,

1: x :=op(a,b)

2: y:=op(b,a)] {Y(z) - x(l)}

|

WP-CONS

wp [z:xi=on(a,b)] {wp | 3 20000 | (32 =x(1)))
- wp [)] x()=x(@} rwp [)] {wp [2:y = 0p(b,0)] {¥(2) = x(1)}}
_ - WP-CONJ
1: x :=op(a,b) | |x(1) =x(2) A
VP | 2:x:=op(a,b) {Wp [2:y:=0p(b,a)] {y(2) = X(l)}}
1:x=op(a,b) | . x(1) = x(2) WETTRANE
"WP| 2 x:=op(a,b) | {“’P [2:y:=op(b, a)] {y(z) = x(l)}}
- wp [1:x:= 0p(,0)] {wp [2:x:= 0p(a,)] {wp [2:y = 0b(b, 0] X(1) =x() AY@D =x(}}} "
- wp [1:x = op(a, b)] {wp [2:x = 0p(a, b) ;¥ := op(b,)] {x(1) = x(2) A y(2) = x(1)} -

1: x := op(a,b)] {x(l) = x(z)}

" [2:x:=op(a,b);y:=op(b,a) | |y(2) =x(1)

25 /30

Logic for Hyper-triple Composition (LHC)

Proposes proof rules for moving between judgments relating
different number of programs.

Reindexing rules: ...

26 /30

Reindexing Rules

Reindexing rules tell us

e when it is possible to offload some reasoning to another index.

e when reindexing of pre-conditions can be propagated to
post-conditions.

e when reindexing of hyper-programs can be propagated to
post-conditions.

27 /30

Questions

Extends RHL rules for n related programs.
Lockstep rules: WP-SEQ, WP-ASSN, WP-IF. ..
Structural rules: WP-FRAME, ...

Proposes proof rules for aligning programs in new ways.

Hyper-structure rules: . ..

Proposes proof rules for moving between judgments relating
different number of programs.

Reindexing rules: ...

28 /30

Motivating Reindexing Rules

Two encodings of idempotence:

- X)) = %20 [1:t,2: (t:8)] {%(1) =RX(2)} (IDEMSEQ)
R =V [1:t2: 8] (K1) =V — R2) =¥} (IDEM)

Q: Are they equally strong?
A: IDEM together with Det,, implies IDEMSEQ.
Q: How do we prove that?

29 /30

Motivating Reindexing Rules
A Proof Sketch

IDEM
X(3y=viEwp [2:t,3:t] {X(2) =V = X(3) =V}

—wp [2: 1] {3V.X(2) = VAR(3) = VAwp [3:t] {X(3) = V})

. We fork the store at 2 to 3 and offload the reasoning to 3.
* Fwp [2:t] {FV.X2) =V Awp [2:t] {X(2) = V}}
S0 =<2 Fwp [L: 6.2 (60] (1) = 22}

where % is X(1) = X(2) Fwp [1:¢,2:t] {%(1) = %(2)}.

30 /30

