
Jialu Bao Feb. 14th 2022 Great Works in PL

“Sometimes” and “not never” revisited: on
branching versus linear time temporal logic

By E. Allen Emerson, Joseph Y. Halpern

Temporal Logic

• Formulas:

• Informal semantics of temporal operators:

• — holds sometime in the future.

• — globally holds / holds always.

• — holds next time.

• — holds until time.

Fp p

Gp p p

Xp p

pUq p q

p, q ::= ap ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ p ∧ q ∣ p ∨ q ∣ p ⇒ q ∣ Fp ∣ Gp ∣ Xp ∣ pUq

Excerpts from paper

From “The Temporal Logic of Programs”

• “The prevalent notions of what constitutes a correctness
of a program can all be reduced to two main concepts:

•

•

By Amir Pnueli, 1977

- Do you agree with his characterization?

 Ex. Which does " holds at program point ”

belong to?

p l

From “The Temporal Logic of Programs”

• “Is the notion of temporality really needed in order to discuss intelligently and
usefully the behavior of programs?”

• For invariance properties: not needed!

• For eventuality properties:

• For deterministic, sequential, structured programs: not essential

• “We can pinpoint exactly where we are in the execution based on
program location and loop counters. ”

• For cyclic/non-deterministic/concurrent programs:

• “Some temporal device is necessary.”

By Amir Pnueli, 1977

- This reminds me of the distinction

Dijkstra made in “Goto statement

considered harmful. ” Any thoughts

on the implication of that connection?

From “The Temporal Logic of Programs”

• Example usage of temporality:

• Liveness: “Something good must eventually happen.”

• Safety: “Something bad must always not happen.”

• Responsiveness: When getting a request p, eventually q will happen.

• Encoding “q eventually follows p” using temporal operators ?

•
F, G, X, U

p ⟹ Fq

By Amir Pnueli, 1980

From “‘Sometime’ is sometimes ‘not never’”
By Leslie Lamport, 1981

•

•
Fa

Ga
Linear Time Interpretation

From “‘Sometime’ is sometimes ‘not never’”
By Leslie Lamport, 1981

Branching Time Interpretation

From “‘Sometime’ is sometimes ‘not never’”
By Leslie Lamport, 1981

• Is “sometime” the same as “not never”?

• Sometime:

• Not never:

• In Linear time interpretation

• In Branching time interpretation, satisfies but not

Fa

¬G¬a

¬G¬a Fa

From “‘Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”

By E. Allen Emerson and Joseph Y. Halpern , 1983

From “‘Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”

By E. Allen Emerson and Joseph Y. Halpern , 1983

Observation:

• interpreted in
Lamport’s Branching time
logic is the same as

 interpreted
in Computation Tree Logic
(CTL).

• In CTL, though
 is not valid,
 is valid.

Fp ∨ G¬p

AFp ∨ AG¬p

AFp ∨ AG¬p
A(Fp ∨ G¬p)

“basic definitions”:

From “‘Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”

By E. Allen Emerson and Joseph Y. Halpern , 1983

• CTL*: A unification of Linear
Temporal Logic (LTL) and
Computation Tree Logic
(CTL)

• Assert on both states and
paths

From “‘Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”

By E. Allen Emerson and Joseph Y. Halpern , 1983

“assumptions”:

- What do you think of the assumption of
-generable?R

From “‘Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”

By E. Allen Emerson and Joseph Y. Halpern , 1983

Is linear temporal logic superior to branching temporal logic?

1. Cannot express .

2. Cannot explicitly assert alternative computation paths.

• Ex.

•

3. Usage in model checking

¬Ap

EG(Processor i is in non-critical section) ∧ EF(Processor i is in the "trying region")

A(G(Processor i is in non-critical section) ∨ F(Processor i is in the "trying region"))

Model Checking
Properties specified in

temporal logic formula p

Systems represented as
transition systems T

Ex. F(x ≤ 0)

Automata with
location as start state and

accepts paths possible in

A2

l

T

Automata that

accepts the state/path

satisfying

A1

¬p } If the intersection of
and is empty,

then the location in the
system satisfies

L(A1)
L(A2)

l
T p

- What are considerations for logic
used for specification?

- Later, in model checking, most

work use LTL or CTL, not CTL*.
Why is that the case?

A more meta comment excerpted from paper:

From “The Temporal Logic of Programs”

• Two trends in the program verification research:

• “The first is towards unification of the basic notions
and approaches to program verification, be they
sequential or concurrent programs.”

• “The second is the continuous search for proof
methods which will approximate more and more the
intuitive reasoning that a programmer employs in
designing and implementing his programs.”

By Amir Pnueli, 1977

