“Sometimes” and “not never” revisited: on
branching versus linear time temporal logic

By E. Allen Emerson, Joseph Y. Halpern

Jialu Bao Feb.14th 2022 Great Works in PL

Temporal Logic

 Formulas:
p.qi=ape dP | T|LlpAglpVvglp=>q|Fp|Gp|Xp|pUq

* Informal semantics of temporal operators:
* Fp — p holds sometime in the future.
* Gp — p globally holds / p holds always.
* Xp — p holds next time.

* pUqg — p holds until g time.

Emerson and

Temporal Logic Leslie Lamport Joseph Y. Halpern
developed by distinguished two pointed out confusions
philosophers and logics: Branch time in [Lamport 1980] and
logicians logic and Linear time proposed CTL*, which

Amir Pnueli
proposed Linear
Temporal Logic

(LTL) for verifying

programs

logic

unites LTL and CTL.

Edmund M. Model Checking as
Clarke and E. Allen a method emerged in
Emerson proposed the work by Clarke,
Computational Emerson, A. P.
Tree Logic (CTL), a Sistla, J.P. Queille

branched time logic. and J. Sifakis.

Model Checking is
used to verify various
real-world software
and hardware.

Excerpts from paper

b

From “The Temporal Logic of Programs’
By Amir Pnueli, 1977

* “The prevalent notions of what constitutes a correctness
of a program can all be reduced to two main concepts:

* a. The concept of invariance, i.e. a property
holding continuously throughout the execution of a
pProgram.

b. The second and even more important concept is

that of eventuality (or temporal implicatiom). In its _ .‘ o
o full generality this denotes a dependence in time in ‘- ~HAE - -
the behavior of the program. We write ¥V, read as: Amar Pnuel

"V eventually follows @ " or " @ temporally implies 1941-2009
VY ", if whenever the situation described by ¢

arises in the program, it is guaranteed that eventu- you agree with his characterization?

ally the situation described by Y will be attained. Ex. Which does "p holds at program point I

belong to?

From “The Temporal Logic of Programs”
By Amir Pnueli, 1977

* “Is the notion of temporality really needed in order to discuss intelligently and
usefully the behavior of programs?”

* For invariance properties: not needed!
* For eventuality properties:
* For deterministic, sequential, structured programs: not essential

* “We can pinpoint exactly where we are in the execution based on

program location and loop counters. ”
- This reminds me of the distinction

* For cyclic/non-deterministic/concurrent programs: Dijkstra madein“Goto statement
considered harmful. ” Any thoughts

e “Some temporal device i1s necessary.’ on the implication of that connection?

From “The Temporal Logic of Programs”
By Amir Pnueli, 1980

* Example usage of temporality:
* Liveness: “Something good must eventually happen.”
» Safety: “Something bad must always not happen.”

» Responsiveness: When getting a request p, eventually g will happen.

* Encoding “q eventually follows p” using temporal operators F, G, X, U?

* p = Fq

From “Sometime’ 1s sometimes ‘not never’”
By Leslie Lamport, 1981

The logic of linear time was used by Pnuelil in
[15], while the logic of branching time seems to be
the one used by most computer scientists for
reasoning about temporal concepts. We have found
this to cause some cenfusion among our colleagues,

so one cf our goals has been to clarify the formal
foundations of Pnueli's work.

auld) —d —a a arbitrary
e Fa O O) @, @, -
Linear 'T'ime Interpretation
o GCl a a a

®
oL
oL
o
o

Branching Time Interpretation

From “Sometime’ 1s sometimes ‘not never’”

By Leslie Lamport, 1981

The logic of linear time was used by Pnuelil in
[15], while the logic of branching time seems to be
the one used by most computer scientists for
reasoning about temporal concepts. We have found
this to cause some cenfusion among our colleagues,
so one cf our goals has been to clarify the formal
foundations of Pnueli's work.

finally p globally p next p P until g

From “Sometime’ 1s sometimes ‘not never’”
By Leslie Lamport, 1981

e [s “sometime” the same as “not never”?
e Sometime: Fa

* Not never: °G—a
—d = =l (1 arbitrary

* In Linear time interpretation () '® O)) -

* In Branching time interpretation, satisfies =G —a but not Fa

From ““Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”
By E. Allen Emerson and Joseph Y. Halpern, 1983

We now provide our critique of Lamport’s approach. Although we do have a
few minor criticisms regarding some peculiar technical features and limitations of
Lamport’s formalism, we would like to emphasize, before we begin, that Lamport’s
formal results are technically correct—that is, they follow via sound mathematical
arguments from his definitions. Our main criticisms instead center around

(1) Lamport’s basic definitions and underlying assumptions, and
(2) the informal conclusions regarding the application of temporal logic to reason-
ing about concurrent programs that Lamport infers from his technical results.

Our chief disagreement is, of course, with Lamport’s conclusion that linear time
logic 1s superior to branching time logic for reasoning about concurrent programs.

From ““Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”
By E. Allen Emerson and Joseph Y. Halpern, 1983

“basic definitions”: Observation:
finally p globally p next p p until g ° Fp V G_'p interpl‘eted In
Lamport’s Branching time
logic is the same as
AFp v AG—p interpreted
in Computation Tree Logic
AlpUG] b S

(CTL).

* In CTL, though
AFp Vv AG-p is not valid,

E[pUQ] A(Fp Vv G-p)is valid.

From ““Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic’

’

By E. Allen Emerson and Joseph Y. Halpern, 1983

* CTL*: A unification of Linear
Temporal Logic (LTL) and
Computation Tree Logic
(CTL)

* Assert on both states and
paths

S1.
S2.

S3.

Pl.
B2

P3a.

P3b.

P4a

P4b.

P5a.

P5b.

Pé6a.

P6b.

s = P iff P € L(s) where P is an atomic proposition.

sE=p A g iff sE p and s E g where p, g are state formulas.

s = —p iff not (s E p) where p 1s a state formula.

s = Ap ift for every path x € X with first(x) = s, x &= p where p is a path
formula.

s E Ep iff for some path x € X with first(x) = s, x = p where p is a path
formula.

x = p iff first(px) = p where p 1s a state formula.

xE p A giff x = p and x k= g where p, g are path formulas.

x E= 7 iff not (x = p) where p is a path formula.

x E Fp iff for some i = 0, first(x’) = p where p is a state formula.

x = Fp iff for some i = 0, x' = p where p is a path formula.

xE Xpiff | x| = 1 and first(x') = p where p is a state formula.

xE Xpiff | x| = | and x' = p where p is a path formula.

xE (p U q) iff for some i = 0, first(x’) E g and for all j = 0 [j < i implies
first(x’) = p].

xE(pUgqg)iff forsome i =0, x' k=g and for all j = 0 [j < i implies X’ = p].

x E f“p iff for infinitely many distinct i, first(x’) = p where p is a state

formula.

x k= Fp iff for infinitely many distinct i, x' = p where p is a path formula.

From ““Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”
By E. Allen Emerson and Joseph Y. Halpern, 1983

assumptions : Lamport correctly observes that “the future behavior
[of a concurrent program] depends only upon the current state, and not upon how
that state was reached.” With this motivation, Lamport requires that the set of
paths X be suffix closed, that is, if x € X then x*“ € X. As observed in {5],
however, suffix closure is not sufficient to guarantee that a program’s future
behavior depends only on its current state. We also need to require that, at least,
X be fusion closed (cf. [26]), meaning that if x,5);, X252 € X then x;sy, € X.?
Moreover, there are some additional properties that the set X of all computations
of a concurrent program can be expected to satisfy. We say that X is /imit closed
(cf. [1]) if whenever each of the infinite sequence of paths x;y:, x1x2)2, X1X2X3V3,
... 1s 1n X, then the infinite path x;x,x3 --- (which is the “limit” of the prefixes
(x), X1X2, X1X2X3, ...)) 1S also in X. We say that a set X of paths is R-generable iff
there exists a total, binary relation R on S such that X consists precisely of the
infinite sequences (o, $i, 52, ...) of states from X for which (s;, si+1) € R.

Fig. 1 R is the class of all R-generable path sets, S is the class of all suthx closed path sets, F s the
class of all fusion closed path sets, and [is the class of all limit closed path sets. All regions shown are
oncmpty., .

- What do you think of the assumption of
R-generable?

From ““Sometimes’ and ‘Not Never’ Revisited:

On Branching versus Linear Time Temporal Logic”
By E. Allen Emerson and Joseph Y. Halpern, 1983

[s linear temporal logic superior to branching temporal logic?

Linear time logic also suffers from the problem that, when we view a linear time
logic L as the branching time logic B(L) (i.c., all formulas of the form Aq where g
1. Cannot CXPreEsSs "Ap- is a formula of L), it is not closed under negation. Although it may be possible to

2. Cannot explicitly assert alternative computation paths.
* Ex. EG(Processor iis in non-critical section) A EF(Processor i is in the "trying region")

* A(G(Processor i is in non-critical section) V F(Processor i is in the "trying region"))

3 Usage in model ChECkmg Model checking for large subclasses of CTL* can be done very efficiently, and, in

general, it seems that model checking is easier for branching time than for linear
time logics (cf. [4, 11]).

Properties specified in
temporal logic formula p

Ex. F(x <0)

Systems represented as
transition systems 1’

Model Checking

>

Automata A, that

accepts the state/path
satisfying —p

Automata A, with

location [as start state and

accepts paths possible in
T

- What are considerations for logic
used for specification?

- Later, in model checking, most
work use LTL or CTL, not CTL".

Why is that the case?

If the intersection of L(A)
and L(A,) is empty,
then the location [in the
system 7' satisfies p

A more meta comment excerpted from paper:

From “The Temporal Logic of Programs”
By Amir Pnueli, 1977

* Two trends in the program verification research:

* “The first is towards unification of the basic notions
and approaches to program verification, be they
sequential or concurrent programs.”

* “The second is the continuous search for proof
methods which will approximate more and more the
intuitive reasoning that a programmer employs in =i v (T

designing and implementing his programs.” Amar Pnuel
1941-2009

