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Motivation

Ex. 2 

while (flip == 0) do  

flip  1 [p] z  z + 1← ←

What is the expected value of z at 
the end of program in term of 
program variables’ value at the 
initialization?

Ex. 1 

z  z + 1 [p] skip←

(z) = z + p𝔼

(z) = z + [flip == 0]· (1 － p)/p 𝔼

Can we automatically find 
this answer?
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• Edsger Dĳkstra, 1975

•  Programs  Assertions  Assertionswpc : × →

• Say wpc(C, F) = G

• Example rules: 

• Assignment:

• Sequencing:

Background: Weakest Pre-condition Calculus

wpc(x ← a, F) := F[a/x]

wpc(P; Q, F) := wpc(P, wpc(Q, F))
3
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• Kozen, ~1985; McIver & Morgan and others, 1990s~today

•  Programs  Expectations  Expectationswpe : × →

• Expectations are maps from program states to numbers

• Ex. , or st ↦ 2 ⋅ st[x] st ↦ st[x] + st[y]

• We simply write , or 2 ⋅ x x + y

• Iverson bracket:  maps states where the assertion  holds to 1 
and maps other states to 0

[G] G

Background: Weakest Pre-expectation Calculus
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•  is wpc(x ← x + 1, x = y) x + 1 = y

•  is wpe(x ← x + 1,[x = y]) [x + 1 = y]

2. Expected values are useful. 

3. It can encode probability of an event  in the output distribution:Ev

• Let the expectation  be .e [Ev]

Reasoning about Quantities
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wpe(C[p]C′ , e) := p ⋅ wpe(C, e) + (1 − p) ⋅ wpe(C′ , e)

wpe(x ← a, e) := e[a/x]

wpe(P; Q, e) := wpe(P, wpe(Q, e))

…

Theorem.  expected value of  after running  from wpe(C, e) = λs . e C s
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Why find exact invariant?

• For simple cases, there is unique fixed point for , so I is a fixed 
point of  iff I is the least fixed point.

ϕ
ϕ

• In other words, in simple cases,  I is an exact invariant iff 
.I = wpe(while G do P, e)

• Simple: the loop is almost surely terminating and  is upper 
bounded by a constant

e
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wpe(while G do P, e)(s2)

wpe(while G do P, e)(s3)

Estimation 

If we can collect data to learn this map, it 
coincides with   on 

sampled program states
wpe(while G do P, e)

If we learn this map, it approximates  
 on sampled 

program states
wpe(while G do P, e)

The learned map may not be 
 but we can 

check whether it is an exact invariant.
wpe(while G do P, e)
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Method Overview

Sampler Data

Expectation e

Loop while G do P

Synthesizer
A CEGIS loop

Verifier Verified  
Exact InvariantSatisfied

Not Satisfied

Counter-example data

Estimate the map 

Learner

Candidate expectations

Learn the map Verify the expectation 
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Sampler

• How to estimate ? 

• It is the expected value of  on the distribution obtained 
from running  from . 

• We can approximate expected values by empirical means. 

wpe(while G do P, e)(s)

e
while G do P s
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from a range:

• bool: uniformly from {0,1}

• int: uniformly from {0,1,…,20}

• prob: uniformly from [0.01,0.99]

• ⋯

• Sample M program states in total
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0.5 1 0 2
… … … …

{N
initial p initial z initial flip Average final z

0.4 0 0 1.5
0.5 1 0 2

…

Averaging

Feature

wpe(while flip = 0 do  . . . , z)(s)
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Sampler Data

Expectation e

Loop while G do P

Estimate the map 

Learner

Candidate expectations

Learn the map 

Model class?

Loss function?

Training algorithm?

How to formulate the expectations?
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initial p initial z initial flip Average post z
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yesno

z + (1-p)/pz

Off-the-shelf  
model tree  

learning
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Learner: Extract Expectations 
• A view change

• Model Tree T  Features  Numbers: →

• Expectations  Program States  Numbers : →

• Let  Program States  Features, then  is an expectationM : → T ∘ M

• Represent as piece-wise mathematical expression

flip = 0? 
yesno

z + (1-p)/pz

[ flip ≠ 0] ⋅ (z) + [ flip = 0] ⋅ (z +
1 − p

p
)

18



Sampler Data

Expectation e

Loop while G do P

Estimate the map 

Learner

Candidate expectations

Learn the map 

Model class?

Loss function?

Training algorithm?

How to formulate the expectations?
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Sampler Data

Expectation e

Loop while G do P

Estimate the map 

Learner

Candidate expectations

Learn the map 

Verifier Verified  
Exact InvariantSatisfied

Not Satisfied

Counter-example data

Verify the expectation 
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Verifier: Check Candidate Expectations

• Recall: In simple cases,  iff 
. 

I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e
I = wpe(while G do P, e)

• Observation: if  is loop less, then it’s possible to calculate  
syntactically

P wpe(P, I)

• Given candidate expectation , we use a solver to check if I′ 

I′ = [G] ⋅ wpe(P, I′ ) + [¬G] ⋅ e
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Implementation

• We implemented a prototype in Python, using Wolfram Alpha Engine 
for verifier

• Sample 500 program states

• Run 500 times from each program state

• Timeout after 10 mins
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Evaluations

• We evaluated on 18 benchmarks collected from prior work

• Successfully generate invariants for 15 out of 18 
benchmarks before timeout

• Time cost: 3-299 sec

• Dominated by sampling time
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• Fail when the ground truth exact invariant is too complicated 

• Too many digits, e.g., I = z + [n > 0] ⋅ 2.625 ⋅ n

• Our learner oscillates between expectations like 
 and [n > 0] ⋅ 2.63 ⋅ n − 0.02 [n > 0] ⋅ 2.62 ⋅ n + 0.01
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• Too many correlated terms, e.g., 
 

• Our learner generates 

x ⋅ y + [n > 0] ⋅ (0.25 ⋅ n2 + 0.5 ⋅ n ⋅ x + 0.5 ⋅ n ⋅ y − 0.25 ⋅ n)

. . . (0.25 ⋅ n2 + 0.5 ⋅ n ⋅ x + 0.5 ⋅ n ⋅ y − 0.27 ⋅ n − 0.01 ⋅ x + 0.12)

More data may help
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• The verifier gets stuck, e.g., 

 + [c = 0] ⋅ [t = 0] ⋅
p1

p1 + p2 − p1 ⋅ p2

[c = 0] ⋅ [t = 0] ⋅
(1 − p2) ⋅ p1

p1 + p2 − p1 ⋅ p2
+ [c = 0] ⋅ (t)
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Limitations

• Fail when the ground truth exact invariant is too complicated  

• The verifier gets stuck, e.g., 

 + [c = 0] ⋅ [t = 0] ⋅
p1

p1 + p2 − p1 ⋅ p2

[c = 0] ⋅ [t = 0] ⋅
(1 − p2) ⋅ p1

p1 + p2 − p1 ⋅ p2
+ [c = 0] ⋅ (t)

Not only need more data but also 
more powerful verifier
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Stepping Back …

• Previously, we generate exact invariant by learning  that approximates 
 and then check if .

I
wpe(while G do P, e) I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e

• Question: Can we generate subinvariants, i.e., I such that 
?


• Sometimes the exact invariant is too complicated 

• I is a subinvariant implies , not the other way

I ≤ [G] ⋅ wpe(P, I) + [¬G] ⋅ e

I ≤ wpe(while G do P, e)
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New Problem: Learning subinvariants

• Given: a loop  and two expectation pre and e.while G do P

• Goal: find expectation I such that  
and .

I ≤ [G] ⋅ wpe(P, I) + [¬G] ⋅ e
pre ≤ I

• Equivalent conditions:

⋀
s

I(s) ≤ [G] ⋅ wpe(P, I)(s) + [¬G] ⋅ e(s) ∧ ⋀
s

pre(s) ≤ I(s)
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•          ⋀
s

I(s) ≤ [G] ⋅ wpe(P, I)(s) + [¬G] ⋅ e(s) ∧ ⋀
s

preE(s) ≤ I(s)

• The ideal loss 

•        

    

Loss′ (I) = ∑
s

max(0, I(s) − G(s) ⋅ wpe(P, I)(s) − (1 − G(s)) ⋅ e(s))

+ ∑
s

max(0, preE(s) − I(s))
In practice: we need to 
estimate λI . wpe(P, I)(s)

In practice: we only sum 
over sampled states
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How to estimate λI . wpe(P, I)(s)

s

Initial state →
→

s1

s2

s3

After 1 iteration

→
⋯

Given I

Data

I(s1)

I(s2)

I(s3)

⋯

{
Their average estimates 
wpe(P, I)(s)
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Same Method, Different Implementations

Learner Verifier

Candidate expectations

Counter-example data

Verified  
Exact InvariantSatisfied

Not Satisfied

Sampler Data

Expectation e

Loop while G do P

Synthesizer
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Challenge

New sampled Data

New Loss Function

Standard Model 
Tree Learning 

Gradient Descent 
on Neural Net

Too complicated for the verifier
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Our Solution

New sampled Data

New Loss Function

Gradient Descent on  
neural encodings of 

model trees

i.e., differentiable 
approximation of 
model trees

A Model Tree
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Limitations

• Noise in sample data

• Gradient descent seems to get stuck in local minima

• It seems a hard learning program. 
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The Learning Problem
• Symbolic Regression: 

• Given: a dataset  where each point has inputs  
and response : 

(X, y) Xi ∈ ℝn

yi ∈ R

• Goal: find a function  that best fits the data set, 
where  is a short closed-form mathematical expression. 

f : ℝn → ℝ
f

• Our learning problem in exact invariant generation is almost the 
same. 

• Our learning problem in subinvariant generation is a bit more 
general. 
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The State of Art of Symbolic Regression

From Symbolic Regression via Neural-Guided Genetic Programming Population Seeding [Neurips 2021]
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Verifier
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