
Data-driven Invariant Learning for
Probabilistic Programs

Jialu Bao

PLDG, March 9th, 2022

Collaborated work with Nitesh Trivedi, Drashti Pathak, Justin Hsu, Subhajit Roy

1

Motivation

2

Motivation

Ex. 1

z z + 1 [p] skip←

2

Motivation

What is the expected value of z at
the end of program in term of
program variables’ value at the
initialization?

Ex. 1

z z + 1 [p] skip←

2

Motivation

What is the expected value of z at
the end of program in term of
program variables’ value at the
initialization?

Ex. 1

z z + 1 [p] skip←

(z) = z + p𝔼

2

Motivation

Ex. 2

while (flip == 0) do

flip 1 [p] z z + 1← ←

What is the expected value of z at
the end of program in term of
program variables’ value at the
initialization?

Ex. 1

z z + 1 [p] skip←

(z) = z + p𝔼

2

Motivation

Ex. 2

while (flip == 0) do

flip 1 [p] z z + 1← ←

What is the expected value of z at
the end of program in term of
program variables’ value at the
initialization?

Ex. 1

z z + 1 [p] skip←

(z) = z + p𝔼

(z) = z + [flip == 0]· (1 － p)/p 𝔼

2

Motivation

Ex. 2

while (flip == 0) do

flip 1 [p] z z + 1← ←

What is the expected value of z at
the end of program in term of
program variables’ value at the
initialization?

Ex. 1

z z + 1 [p] skip←

(z) = z + p𝔼

(z) = z + [flip == 0]· (1 － p)/p 𝔼

Can we automatically find
this answer?

2

Background: Weakest Pre-condition Calculus

3

• Edsger Dĳkstra, 1975

Background: Weakest Pre-condition Calculus

3

• Edsger Dĳkstra, 1975

• Programs Assertions Assertionswpc : × →

Background: Weakest Pre-condition Calculus

3

• Edsger Dĳkstra, 1975

• Programs Assertions Assertionswpc : × →

• Say wpc(C, F) = G

Background: Weakest Pre-condition Calculus

3

• Edsger Dĳkstra, 1975

• Programs Assertions Assertionswpc : × →

• Say wpc(C, F) = G

Background: Weakest Pre-condition Calculus

3

• Edsger Dĳkstra, 1975

• Programs Assertions Assertionswpc : × →

• Say wpc(C, F) = G

Background: Weakest Pre-condition Calculus

3

• Edsger Dĳkstra, 1975

• Programs Assertions Assertionswpc : × →

• Say wpc(C, F) = G

• Example rules:

Background: Weakest Pre-condition Calculus

3

• Edsger Dĳkstra, 1975

• Programs Assertions Assertionswpc : × →

• Say wpc(C, F) = G

• Example rules:

• Assignment:

Background: Weakest Pre-condition Calculus

wpc(x ← a, F) := F[a/x]

3

• Edsger Dĳkstra, 1975

• Programs Assertions Assertionswpc : × →

• Say wpc(C, F) = G

• Example rules:

• Assignment:

• Sequencing:

Background: Weakest Pre-condition Calculus

wpc(x ← a, F) := F[a/x]

wpc(P; Q, F) := wpc(P, wpc(Q, F))
3

Background: Weakest Pre-expectation Calculus

4

• Kozen, ~1985; McIver & Morgan and others, 1990s~today

Background: Weakest Pre-expectation Calculus

4

• Kozen, ~1985; McIver & Morgan and others, 1990s~today

• Programs Expectations Expectationswpe : × →

Background: Weakest Pre-expectation Calculus

4

• Kozen, ~1985; McIver & Morgan and others, 1990s~today

• Programs Expectations Expectationswpe : × →

• Expectations are maps from program states to numbers

Background: Weakest Pre-expectation Calculus

4

• Kozen, ~1985; McIver & Morgan and others, 1990s~today

• Programs Expectations Expectationswpe : × →

• Expectations are maps from program states to numbers

• Ex. , or st ↦ 2 ⋅ st[x] st ↦ st[x] + st[y]

Background: Weakest Pre-expectation Calculus

4

• Kozen, ~1985; McIver & Morgan and others, 1990s~today

• Programs Expectations Expectationswpe : × →

• Expectations are maps from program states to numbers

• Ex. , or st ↦ 2 ⋅ st[x] st ↦ st[x] + st[y]

• We simply write , or 2 ⋅ x x + y

Background: Weakest Pre-expectation Calculus

4

• Kozen, ~1985; McIver & Morgan and others, 1990s~today

• Programs Expectations Expectationswpe : × →

• Expectations are maps from program states to numbers

• Ex. , or st ↦ 2 ⋅ st[x] st ↦ st[x] + st[y]

• We simply write , or 2 ⋅ x x + y

• Iverson bracket: maps states where the assertion holds to 1
and maps other states to 0

[G] G

Background: Weakest Pre-expectation Calculus

4

Reasoning about Quantities

5

• We let be the expected value of expectation after running wpe(C, e) e C

Reasoning about Quantities

5

• We let be the expected value of expectation after running wpe(C, e) e C

1. It generalizes weakest pre-condition calculus, e.g.,

Reasoning about Quantities

5

• We let be the expected value of expectation after running wpe(C, e) e C

1. It generalizes weakest pre-condition calculus, e.g.,

• is wpc(x ← x + 1, x = y) x + 1 = y

Reasoning about Quantities

5

• We let be the expected value of expectation after running wpe(C, e) e C

1. It generalizes weakest pre-condition calculus, e.g.,

• is wpc(x ← x + 1, x = y) x + 1 = y

• is wpe(x ← x + 1,[x = y]) [x + 1 = y]

Reasoning about Quantities

5

• We let be the expected value of expectation after running wpe(C, e) e C

1. It generalizes weakest pre-condition calculus, e.g.,

• is wpc(x ← x + 1, x = y) x + 1 = y

• is wpe(x ← x + 1,[x = y]) [x + 1 = y]

2. Expected values are useful.

Reasoning about Quantities

5

• We let be the expected value of expectation after running wpe(C, e) e C

1. It generalizes weakest pre-condition calculus, e.g.,

• is wpc(x ← x + 1, x = y) x + 1 = y

• is wpe(x ← x + 1,[x = y]) [x + 1 = y]

2. Expected values are useful.

3. It can encode probability of an event in the output distribution:Ev

Reasoning about Quantities

5

• We let be the expected value of expectation after running wpe(C, e) e C

1. It generalizes weakest pre-condition calculus, e.g.,

• is wpc(x ← x + 1, x = y) x + 1 = y

• is wpe(x ← x + 1,[x = y]) [x + 1 = y]

2. Expected values are useful.

3. It can encode probability of an event in the output distribution:Ev

• Let the expectation be .e [Ev]

Reasoning about Quantities

5

Weakest Pre-expectation Calculus
reason about expected values!

Definition [Morgan and McIver]

6

Weakest Pre-expectation Calculus
reason about expected values!

Definition [Morgan and McIver]

wpe(x ← a, e) := e[a/x]

6

Weakest Pre-expectation Calculus
reason about expected values!

Definition [Morgan and McIver]

wpe(x ← a, e) := e[a/x]

wpe(P; Q, e) := wpe(P, wpe(Q, e))

6

Weakest Pre-expectation Calculus
reason about expected values!

Definition [Morgan and McIver]

wpe(C[p]C′ , e) := p ⋅ wpe(C, e) + (1 − p) ⋅ wpe(C′ , e)

wpe(x ← a, e) := e[a/x]

wpe(P; Q, e) := wpe(P, wpe(Q, e))

6

Weakest Pre-expectation Calculus
reason about expected values!

Definition [Morgan and McIver]

wpe(C[p]C′ , e) := p ⋅ wpe(C, e) + (1 − p) ⋅ wpe(C′ , e)

wpe(x ← a, e) := e[a/x]

wpe(P; Q, e) := wpe(P, wpe(Q, e))

wpe(while b do body, e) := lfp(λx . [b] ⋅ wpe(body, x) + [¬b] ⋅ e)

6

Weakest Pre-expectation Calculus
reason about expected values!

Definition [Morgan and McIver]

wpe(C[p]C′ , e) := p ⋅ wpe(C, e) + (1 − p) ⋅ wpe(C′ , e)

wpe(x ← a, e) := e[a/x]

wpe(P; Q, e) := wpe(P, wpe(Q, e))

…
wpe(while b do body, e) := lfp(λx . [b] ⋅ wpe(body, x) + [¬b] ⋅ e)

6

Weakest Pre-expectation Calculus
reason about expected values!

Definition [Morgan and McIver]

wpe(C[p]C′ , e) := p ⋅ wpe(C, e) + (1 − p) ⋅ wpe(C′ , e)

wpe(x ← a, e) := e[a/x]

wpe(P; Q, e) := wpe(P, wpe(Q, e))

…

Theorem. expected value of after running from wpe(C, e) = λs . e C s

wpe(while b do body, e) := lfp(λx . [b] ⋅ wpe(body, x) + [¬b] ⋅ e)

6

WPE Calculus on Motivating Examples

7

WPE Calculus on Motivating Examples
Ex. 1

(z z + 1 [p] skip, z)

= p (z z + 1, z) + (1 p) (skip, z)

= p (z + 1) + (1 p) z

= z + p

wpe ←

⋅ wpe ← − ⋅ wpe

⋅ − ⋅

7

WPE Calculus on Motivating Examples
Ex. 1

(z z + 1 [p] skip, z)

= p (z z + 1, z) + (1 p) (skip, z)

= p (z + 1) + (1 p) z

= z + p

wpe ←

⋅ wpe ← − ⋅ wpe

⋅ − ⋅

Ex. 2

(while (flip == 0) do (flip 1 [p] z z + 1), z)? wpe ← ←

7

WPE Calculus on Motivating Examples
Ex. 1

(z z + 1 [p] skip, z)

= p (z z + 1, z) + (1 p) (skip, z)

= p (z + 1) + (1 p) z

= z + p

wpe ←

⋅ wpe ← − ⋅ wpe

⋅ − ⋅

Ex. 2

(while (flip == 0) do (flip 1 [p] z z + 1), z)? wpe ← ←

wpe(while b do body, e) := lfp(λx . [b] ⋅ wpe(body, x) + [¬b] ⋅ e)

7

WPE Calculus on Motivating Examples
Ex. 1

(z z + 1 [p] skip, z)

= p (z z + 1, z) + (1 p) (skip, z)

= p (z + 1) + (1 p) z

= z + p

wpe ←

⋅ wpe ← − ⋅ wpe

⋅ − ⋅

Ex. 2

(while (flip == 0) do (flip 1 [p] z z + 1), z)? wpe ← ←

wpe(while b do body, e) := lfp(λx . [b] ⋅ wpe(body, x) + [¬b] ⋅ e)

The least fixed point is indirect and hard to work with!

7

WPE Calculus on Motivating Examples
Ex. 1

(z z + 1 [p] skip, z)

= p (z z + 1, z) + (1 p) (skip, z)

= p (z + 1) + (1 p) z

= z + p

wpe ←

⋅ wpe ← − ⋅ wpe

⋅ − ⋅

Ex. 2

(while (flip == 0) do (flip 1 [p] z z + 1), z)? wpe ← ←

wpe(while b do body, e) := lfp(λx . [b] ⋅ wpe(body, x) + [¬b] ⋅ e)

The least fixed point is indirect and hard to work with!

7

{ ϕ

Problem Statement

8

Problem Statement

• Given: a loop and an expectation e.while G do P

8

Problem Statement

• Given: a loop and an expectation e.while G do P

• Goal: find expectation I such that .I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e

8

Problem Statement

• Given: a loop and an expectation e.while G do P

• Goal: find expectation I such that .I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e

• We call e the postexpectation, and call I an exact invariant of the loop.

8

Why find exact invariant?

9

Why find exact invariant?

• For simple cases, there is unique fixed point for , so I is a fixed
point of iff I is the least fixed point.

ϕ
ϕ

9

Why find exact invariant?

• For simple cases, there is unique fixed point for , so I is a fixed
point of iff I is the least fixed point.

ϕ
ϕ

• In other words, in simple cases, I is an exact invariant iff
.I = wpe(while G do P, e)

9

Why find exact invariant?

• For simple cases, there is unique fixed point for , so I is a fixed
point of iff I is the least fixed point.

ϕ
ϕ

• In other words, in simple cases, I is an exact invariant iff
.I = wpe(while G do P, e)

• Simple: the loop is almost surely terminating and is upper
bounded by a constant

e

9

Casting into a Learning Problem

10

Casting into a Learning Problem

• is a map from program states to numbersI = wpe(while G do P, e)

10

Casting into a Learning Problem

• is a map from program states to numbersI = wpe(while G do P, e)

↦
↦
↦

wpe(while G do P, e)(s1)s1

s2

s3

Program states Numbers

wpe(while G do P, e)(s2)

wpe(while G do P, e)(s3)

10

Casting into a Learning Problem

• is a map from program states to numbersI = wpe(while G do P, e)

↦
↦
↦

wpe(while G do P, e)(s1)s1

s2

s3

Program states Numbers

wpe(while G do P, e)(s2)

wpe(while G do P, e)(s3)

If we can collect data to learn this map, it
coincides with on

sampled program states
wpe(while G do P, e)

10

Casting into a Learning Problem

• is a map from program states to numbersI = wpe(while G do P, e)

↦
↦
↦

wpe(while G do P, e)(s1)s1

s2

s3

Program states Numbers

wpe(while G do P, e)(s2)

wpe(while G do P, e)(s3)

Estimation

If we can collect data to learn this map, it
coincides with on

sampled program states
wpe(while G do P, e)

10

Casting into a Learning Problem

• is a map from program states to numbersI = wpe(while G do P, e)

↦
↦
↦

wpe(while G do P, e)(s1)s1

s2

s3

Program states Numbers

wpe(while G do P, e)(s2)

wpe(while G do P, e)(s3)

Estimation

If we can collect data to learn this map, it
coincides with on

sampled program states
wpe(while G do P, e)

If we learn this map, it approximates
 on sampled

program states
wpe(while G do P, e)

10

Casting into a Learning Problem

• is a map from program states to numbersI = wpe(while G do P, e)

↦
↦
↦

wpe(while G do P, e)(s1)s1

s2

s3

Program states Numbers

wpe(while G do P, e)(s2)

wpe(while G do P, e)(s3)

Estimation

If we can collect data to learn this map, it
coincides with on

sampled program states
wpe(while G do P, e)

If we learn this map, it approximates
 on sampled

program states
wpe(while G do P, e)

The learned map may not be
 but we can

check whether it is an exact invariant.
wpe(while G do P, e)

10

Method Overview

11

Method Overview

Sampler Data

Expectation e

Loop while G do P

Estimate the map

11

Method Overview

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

11

Method Overview

Sampler Data

Expectation e

Loop while G do P

Verifier Verified
Exact InvariantSatisfied

Not Satisfied

Counter-example data

Estimate the map

Learner

Candidate expectations

Learn the map Verify the expectation

11

Method Overview

Sampler Data

Expectation e

Loop while G do P

Synthesizer
A CEGIS loop

Verifier Verified
Exact InvariantSatisfied

Not Satisfied

Counter-example data

Estimate the map

Learner

Candidate expectations

Learn the map Verify the expectation

11

Sampler

12

Sampler

• How to estimate ?

• It is the expected value of on the distribution obtained
from running from .

• We can approximate expected values by empirical means.

wpe(while G do P, e)(s)

e
while G do P s

12

Sampler: Sample Program States

13

Sampler: Sample Program States
• To sample a program state, we sample each program variable’s value

from a range:

13

Sampler: Sample Program States
• To sample a program state, we sample each program variable’s value

from a range:

• bool: uniformly from {0,1}

13

Sampler: Sample Program States
• To sample a program state, we sample each program variable’s value

from a range:

• bool: uniformly from {0,1}

• int: uniformly from {0,1,…,20}

13

Sampler: Sample Program States
• To sample a program state, we sample each program variable’s value

from a range:

• bool: uniformly from {0,1}

• int: uniformly from {0,1,…,20}

• prob: uniformly from [0.01,0.99]

13

Sampler: Sample Program States
• To sample a program state, we sample each program variable’s value

from a range:

• bool: uniformly from {0,1}

• int: uniformly from {0,1,…,20}

• prob: uniformly from [0.01,0.99]

• ⋯

13

Sampler: Sample Program States
• To sample a program state, we sample each program variable’s value

from a range:

• bool: uniformly from {0,1}

• int: uniformly from {0,1,…,20}

• prob: uniformly from [0.01,0.99]

• ⋯

• Sample M program states in total

13

Sampler: Estimate on program stateswpe

14

Sampler: Estimate on program stateswpe
• Generate a list of features

14

Sampler: Estimate on program stateswpe
• Generate a list of features

• For each sampled program state s, run the loop for N times and record
the postexpectation’s value when the loop exits

14

Sampler: Estimate on program stateswpe
• Generate a list of features

• For each sampled program state s, run the loop for N times and record
the postexpectation’s value when the loop exits

initial p initial z initial flip final z
0.4 0 0 1
0.4 0 0 2
0.4 0 0 0
0.4 0 0 3
0.5 1 0 2
0.5 1 0 3
0.5 1 0 1
0.5 1 0 2
… … … …

{N

Feature

14

Sampler: Estimate on program stateswpe
• Generate a list of features

• For each sampled program state s, run the loop for N times and record
the postexpectation’s value when the loop exits

initial p initial z initial flip final z
0.4 0 0 1
0.4 0 0 2
0.4 0 0 0
0.4 0 0 3
0.5 1 0 2
0.5 1 0 3
0.5 1 0 1
0.5 1 0 2
… … … …

{N
initial p initial z initial flip Average final z

0.4 0 0 1.5
0.5 1 0 2

…

Averaging

Feature

14

Sampler: Estimate on program stateswpe
• Generate a list of features

• For each sampled program state s, run the loop for N times and record
the postexpectation’s value when the loop exits

initial p initial z initial flip final z
0.4 0 0 1
0.4 0 0 2
0.4 0 0 0
0.4 0 0 3
0.5 1 0 2
0.5 1 0 3
0.5 1 0 1
0.5 1 0 2
… … … …

{N
initial p initial z initial flip Average final z

0.4 0 0 1.5
0.5 1 0 2

…

Averaging

Feature

wpe(while flip = 0 do . . . , z)(s)

14

Sampler Data

Expectation e

Loop while G do P

Estimate the map

15

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

15

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

Model class?

15

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

Model class?

Loss function?

15

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

Model class?

Loss function?

Training algorithm?

15

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

Model class?

Loss function?

Training algorithm?

How to formulate the expectations?

15

Learner: Model Class

16

Learner: Model Class
• Model trees generalize decision trees with a model at each leaf.

16

Learner: Model Class
• Model trees generalize decision trees with a model at each leaf.

• Ex.

16

Learner: Model Class
• Model trees generalize decision trees with a model at each leaf.

• Ex. flip = 0?
yesno

10

16

Learner: Model Class
• Model trees generalize decision trees with a model at each leaf.

• Ex. flip = 0?
yesno

z + 2 ⋅ pz

flip = 0?
yesno

10

16

Learner: Model Class
• Model trees generalize decision trees with a model at each leaf.

• Ex.

• Leaf models: linear functions or cumulative products of features

flip = 0?
yesno

z + 2 ⋅ pz

flip = 0?
yesno

10

16

Learner: Model Class
• Model trees generalize decision trees with a model at each leaf.

• Ex.

• Leaf models: linear functions or cumulative products of features

• Advantages:

flip = 0?
yesno

z + 2 ⋅ pz

flip = 0?
yesno

10

16

Learner: Model Class
• Model trees generalize decision trees with a model at each leaf.

• Ex.

• Leaf models: linear functions or cumulative products of features

• Advantages:

• Easy for human to interpret

flip = 0?
yesno

z + 2 ⋅ pz

flip = 0?
yesno

10

16

Learner: Model Class
• Model trees generalize decision trees with a model at each leaf.

• Ex.

• Leaf models: linear functions or cumulative products of features

• Advantages:

• Easy for human to interpret

• Easy for verifier to manipulate

flip = 0?
yesno

z + 2 ⋅ pz

flip = 0?
yesno

10

16

Learner: Loss and Training

17

Learner: Loss and Training
• Loss of a model tree on collected data T D

Loss(T, D) = ∑
(f,v) ∈ D

(T(f) − v)2

17

Learner: Loss and Training
• Loss of a model tree on collected data T D

Loss(T, D) = ∑
(f,v) ∈ D

(T(f) − v)2

{ {
 feature vector on f : s v : wpe(while flip = 0 do . . . , z)(s)

initial p initial z initial flip Average post z
0.4 0 0 1.5
0.5 1 0 2

…

17

Learner: Loss and Training
• Loss of a model tree on collected data T D

Loss(T, D) = ∑
(f,v) ∈ D

(T(f) − v)2

• Fit a model tree T to minimize the loss

{ {
 feature vector on f : s v : wpe(while flip = 0 do . . . , z)(s)

initial p initial z initial flip Average post z
0.4 0 0 1.5
0.5 1 0 2

…

17

Learner: Loss and Training
• Loss of a model tree on collected data T D

Loss(T, D) = ∑
(f,v) ∈ D

(T(f) − v)2

• Fit a model tree T to minimize the loss

{ {
 feature vector on f : s v : wpe(while flip = 0 do . . . , z)(s)

initial p initial z initial flip Average post z
0.4 0 0 1.5
0.5 1 0 2

…

flip = 0?
yesno

z + (1-p)/pz

Off-the-shelf
model tree

learning

17

Learner: Extract Expectations

18

Learner: Extract Expectations
• A view change

18

Learner: Extract Expectations
• A view change

• Model Tree T Features Numbers: →

18

Learner: Extract Expectations
• A view change

• Model Tree T Features Numbers: →

• Expectations Program States Numbers : →

18

Learner: Extract Expectations
• A view change

• Model Tree T Features Numbers: →

• Expectations Program States Numbers : →

• Let Program States Features, then is an expectationM : → T ∘ M

18

Learner: Extract Expectations
• A view change

• Model Tree T Features Numbers: →

• Expectations Program States Numbers : →

• Let Program States Features, then is an expectationM : → T ∘ M

• Represent as piece-wise mathematical expression

18

Learner: Extract Expectations
• A view change

• Model Tree T Features Numbers: →

• Expectations Program States Numbers : →

• Let Program States Features, then is an expectationM : → T ∘ M

• Represent as piece-wise mathematical expression

flip = 0?
yesno

z + (1-p)/pz

18

Learner: Extract Expectations
• A view change

• Model Tree T Features Numbers: →

• Expectations Program States Numbers : →

• Let Program States Features, then is an expectationM : → T ∘ M

• Represent as piece-wise mathematical expression

flip = 0?
yesno

z + (1-p)/pz

[flip ≠ 0] ⋅ (z) + [flip = 0] ⋅ (z +
1 − p

p
)

18

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

Model class?

Loss function?

Training algorithm?

How to formulate the expectations?

19

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

19

Sampler Data

Expectation e

Loop while G do P

Estimate the map

Learner

Candidate expectations

Learn the map

Verifier Verified
Exact InvariantSatisfied

Not Satisfied

Counter-example data

Verify the expectation

19

Verifier: Check Candidate Expectations

20

Verifier: Check Candidate Expectations

• Recall: In simple cases, iff
.

I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e
I = wpe(while G do P, e)

20

Verifier: Check Candidate Expectations

• Recall: In simple cases, iff
.

I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e
I = wpe(while G do P, e)

• Observation: if is loop less, then it’s possible to calculate
syntactically

P wpe(P, I)

20

Verifier: Check Candidate Expectations

• Recall: In simple cases, iff
.

I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e
I = wpe(while G do P, e)

• Observation: if is loop less, then it’s possible to calculate
syntactically

P wpe(P, I)

• Given candidate expectation , we use a solver to check if I′

I′ = [G] ⋅ wpe(P, I′) + [¬G] ⋅ e

20

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

• Solution:

• Find multiple counter-examples

• Find counter-example that maximize the violation

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

• Solution:

• Find multiple counter-examples

• Find counter-example that maximize the violation

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

• Solution:

• Find multiple counter-examples

• Find counter-example that maximize the violation

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

• Solution:

• Find multiple counter-examples

• Find counter-example that maximize the violation

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

• Solution:

• Find multiple counter-examples

• Find counter-example that maximize the violation

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

• Solution:

• Find multiple counter-examples

• Find counter-example that maximize the violation

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

• Solution:

• Find multiple counter-examples

• Find counter-example that maximize the violation

Verifier: Find Counter-examples

21

• One counter-example may not change the learning process enough

• Solution:

• Find multiple counter-examples

• Find counter-example that maximize the violation

Verifier: Find Counter-examples

21

Implementation

22

Implementation

• We implemented a prototype in Python, using Wolfram Alpha Engine
for verifier

22

Implementation

• We implemented a prototype in Python, using Wolfram Alpha Engine
for verifier

• Sample 500 program states

22

Implementation

• We implemented a prototype in Python, using Wolfram Alpha Engine
for verifier

• Sample 500 program states

• Run 500 times from each program state

22

Implementation

• We implemented a prototype in Python, using Wolfram Alpha Engine
for verifier

• Sample 500 program states

• Run 500 times from each program state

• Timeout after 10 mins

22

Evaluations

23

Evaluations

• We evaluated on 18 benchmarks collected from prior work

23

Evaluations

• We evaluated on 18 benchmarks collected from prior work

• Successfully generate invariants for 15 out of 18
benchmarks before timeout

23

Evaluations

• We evaluated on 18 benchmarks collected from prior work

• Successfully generate invariants for 15 out of 18
benchmarks before timeout

• Time cost: 3-299 sec

23

Evaluations

• We evaluated on 18 benchmarks collected from prior work

• Successfully generate invariants for 15 out of 18
benchmarks before timeout

• Time cost: 3-299 sec

• Dominated by sampling time

23

Limitations

24

Limitations

• Fail when the ground truth exact invariant is too complicated

24

Limitations

• Fail when the ground truth exact invariant is too complicated

• Too many digits, e.g., I = z + [n > 0] ⋅ 2.625 ⋅ n

24

Limitations

• Fail when the ground truth exact invariant is too complicated

• Too many digits, e.g., I = z + [n > 0] ⋅ 2.625 ⋅ n

• Our learner oscillates between expectations like
 and [n > 0] ⋅ 2.63 ⋅ n − 0.02 [n > 0] ⋅ 2.62 ⋅ n + 0.01

24

Limitations

• Fail when the ground truth exact invariant is too complicated

• Too many correlated terms, e.g.,

• Our learner generates

x ⋅ y + [n > 0] ⋅ (0.25 ⋅ n2 + 0.5 ⋅ n ⋅ x + 0.5 ⋅ n ⋅ y − 0.25 ⋅ n)

. . . (0.25 ⋅ n2 + 0.5 ⋅ n ⋅ x + 0.5 ⋅ n ⋅ y − 0.27 ⋅ n − 0.01 ⋅ x + 0.12)

25

Limitations

• Fail when the ground truth exact invariant is too complicated

• Too many correlated terms, e.g.,

• Our learner generates

x ⋅ y + [n > 0] ⋅ (0.25 ⋅ n2 + 0.5 ⋅ n ⋅ x + 0.5 ⋅ n ⋅ y − 0.25 ⋅ n)

. . . (0.25 ⋅ n2 + 0.5 ⋅ n ⋅ x + 0.5 ⋅ n ⋅ y − 0.27 ⋅ n − 0.01 ⋅ x + 0.12)

More data may help

25

Limitations

• Fail when the ground truth exact invariant is too complicated

• The verifier gets stuck, e.g.,

 + [c = 0] ⋅ [t = 0] ⋅
p1

p1 + p2 − p1 ⋅ p2

[c = 0] ⋅ [t = 0] ⋅
(1 − p2) ⋅ p1

p1 + p2 − p1 ⋅ p2
+ [c = 0] ⋅ (t)

26

Limitations

• Fail when the ground truth exact invariant is too complicated

• The verifier gets stuck, e.g.,

 + [c = 0] ⋅ [t = 0] ⋅
p1

p1 + p2 − p1 ⋅ p2

[c = 0] ⋅ [t = 0] ⋅
(1 − p2) ⋅ p1

p1 + p2 − p1 ⋅ p2
+ [c = 0] ⋅ (t)

Not only need more data but also
more powerful verifier

26

Stepping Back …

27

Stepping Back …

• Previously, we generate exact invariant by learning that approximates
 and then check if .

I
wpe(while G do P, e) I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e

27

Stepping Back …

• Previously, we generate exact invariant by learning that approximates
 and then check if .

I
wpe(while G do P, e) I = [G] ⋅ wpe(P, I) + [¬G] ⋅ e

• Question: Can we generate subinvariants, i.e., I such that
?

• Sometimes the exact invariant is too complicated

• I is a subinvariant implies , not the other way

I ≤ [G] ⋅ wpe(P, I) + [¬G] ⋅ e

I ≤ wpe(while G do P, e)

27

New Problem: Learning subinvariants

28

New Problem: Learning subinvariants

• Given: a loop and two expectation pre and e.while G do P

28

New Problem: Learning subinvariants

• Given: a loop and two expectation pre and e.while G do P

• Goal: find expectation I such that
and .

I ≤ [G] ⋅ wpe(P, I) + [¬G] ⋅ e
pre ≤ I

28

New Problem: Learning subinvariants

• Given: a loop and two expectation pre and e.while G do P

• Goal: find expectation I such that
and .

I ≤ [G] ⋅ wpe(P, I) + [¬G] ⋅ e
pre ≤ I

• Equivalent conditions:

⋀
s

I(s) ≤ [G] ⋅ wpe(P, I)(s) + [¬G] ⋅ e(s) ∧ ⋀
s

pre(s) ≤ I(s)

28

Casting into a Learning Problem

29

Casting into a Learning Problem
• The condition

• ⋀
s

I(s) ≤ [G] ⋅ wpe(P, I)(s) + [¬G] ⋅ e(s) ∧ ⋀
s

preE(s) ≤ I(s)

29

Casting into a Learning Problem
• The condition

• ⋀
s

I(s) ≤ [G] ⋅ wpe(P, I)(s) + [¬G] ⋅ e(s) ∧ ⋀
s

preE(s) ≤ I(s)

• The ideal loss

•

Loss′ (I) = ∑
s

max(0, I(s) − G(s) ⋅ wpe(P, I)(s) − (1 − G(s)) ⋅ e(s))

+ ∑
s

max(0, preE(s) − I(s))

29

Casting into a Learning Problem
• The condition

• ⋀
s

I(s) ≤ [G] ⋅ wpe(P, I)(s) + [¬G] ⋅ e(s) ∧ ⋀
s

preE(s) ≤ I(s)

• The ideal loss

•

Loss′ (I) = ∑
s

max(0, I(s) − G(s) ⋅ wpe(P, I)(s) − (1 − G(s)) ⋅ e(s))

+ ∑
s

max(0, preE(s) − I(s))

In practice: we only sum
over sampled states

29

Casting into a Learning Problem
• The condition

• ⋀
s

I(s) ≤ [G] ⋅ wpe(P, I)(s) + [¬G] ⋅ e(s) ∧ ⋀
s

preE(s) ≤ I(s)

• The ideal loss

•

Loss′ (I) = ∑
s

max(0, I(s) − G(s) ⋅ wpe(P, I)(s) − (1 − G(s)) ⋅ e(s))

+ ∑
s

max(0, preE(s) − I(s))
In practice: we need to
estimate λI . wpe(P, I)(s)

In practice: we only sum
over sampled states

29

How to estimate λI . wpe(P, I)(s)

30

How to estimate λI . wpe(P, I)(s)

s

Initial state

30

How to estimate λI . wpe(P, I)(s)

s

Initial state →
→

s1

s2

s3

After 1 iteration

→
⋯

30

How to estimate λI . wpe(P, I)(s)

s

Initial state →
→

s1

s2

s3

After 1 iteration

→
⋯

Data

30

How to estimate λI . wpe(P, I)(s)

s

Initial state →
→

s1

s2

s3

After 1 iteration

→
⋯

Given I

Data

30

How to estimate λI . wpe(P, I)(s)

s

Initial state →
→

s1

s2

s3

After 1 iteration

→
⋯

Given I

Data

I(s1)

I(s2)

I(s3)

⋯

30

How to estimate λI . wpe(P, I)(s)

s

Initial state →
→

s1

s2

s3

After 1 iteration

→
⋯

Given I

Data

I(s1)

I(s2)

I(s3)

⋯

{
Their average estimates
wpe(P, I)(s)

30

Same Method, Different Implementations

Learner Verifier

Candidate expectations

Counter-example data

Verified
Exact InvariantSatisfied

Not Satisfied

Sampler Data

Expectation e

Loop while G do P

Synthesizer

31

Challenge

32

Challenge

New sampled Data

New Loss Function

Standard Model
Tree Learning

32

Challenge

New sampled Data

New Loss Function

Standard Model
Tree Learning

32

Challenge

New sampled Data

New Loss Function

Standard Model
Tree Learning

Gradient Descent
on Neural Net

32

Challenge

New sampled Data

New Loss Function

Standard Model
Tree Learning

Gradient Descent
on Neural Net

32

Challenge

New sampled Data

New Loss Function

Standard Model
Tree Learning

Gradient Descent
on Neural Net

Too complicated for the verifier

32

Our Solution

New sampled Data

New Loss Function

33

Our Solution

New sampled Data

New Loss Function

Gradient Descent on
neural encodings of

model trees

33

Our Solution

New sampled Data

New Loss Function

Gradient Descent on
neural encodings of

model trees

i.e., differentiable
approximation of
model trees

33

Our Solution

New sampled Data

New Loss Function

Gradient Descent on
neural encodings of

model trees

i.e., differentiable
approximation of
model trees

33

Our Solution

New sampled Data

New Loss Function

Gradient Descent on
neural encodings of

model trees

i.e., differentiable
approximation of
model trees

A Model Tree

33

Evaluations

34

Evaluations

• We constructed 32 benchmarks using the 18 programs we
collected from prior work and different preexpectations

34

Evaluations

• We constructed 32 benchmarks using the 18 programs we
collected from prior work and different preexpectations

• Successfully generate subinvariants for 25 out of 32
benchmarks before timeout

34

Evaluations

• We constructed 32 benchmarks using the 18 programs we
collected from prior work and different preexpectations

• Successfully generate subinvariants for 25 out of 32
benchmarks before timeout

• Time cost: 33-196 sec

34

Evaluations

• We constructed 32 benchmarks using the 18 programs we
collected from prior work and different preexpectations

• Successfully generate subinvariants for 25 out of 32
benchmarks before timeout

• Time cost: 33-196 sec

• Dominated by learning time

34

Limitations

35

Limitations

• Noise in sample data

35

Limitations

• Noise in sample data

• Gradient descent seems to get stuck in local minima

35

Limitations

• Noise in sample data

• Gradient descent seems to get stuck in local minima

• It seems a hard learning program.

35

The Learning Problem

36

The Learning Problem
• Symbolic Regression:

36

The Learning Problem
• Symbolic Regression:

• Given: a dataset where each point has inputs
and response :

(X, y) Xi ∈ ℝn

yi ∈ R

36

The Learning Problem
• Symbolic Regression:

• Given: a dataset where each point has inputs
and response :

(X, y) Xi ∈ ℝn

yi ∈ R

• Goal: find a function that best fits the data set,
where is a short closed-form mathematical expression.

f : ℝn → ℝ
f

36

The Learning Problem
• Symbolic Regression:

• Given: a dataset where each point has inputs
and response :

(X, y) Xi ∈ ℝn

yi ∈ R

• Goal: find a function that best fits the data set,
where is a short closed-form mathematical expression.

f : ℝn → ℝ
f

• Our learning problem in exact invariant generation is almost the
same.

36

The Learning Problem
• Symbolic Regression:

• Given: a dataset where each point has inputs
and response :

(X, y) Xi ∈ ℝn

yi ∈ R

• Goal: find a function that best fits the data set,
where is a short closed-form mathematical expression.

f : ℝn → ℝ
f

• Our learning problem in exact invariant generation is almost the
same.

• Our learning problem in subinvariant generation is a bit more
general.

36

The State of Art of Symbolic Regression

From Symbolic Regression via Neural-Guided Genetic Programming Population Seeding [Neurips 2021]

37

Take Away

38

Take Away

PL problems

Learning problems

38

Take Away

PL problems

Learning problems

Constraints

Loss

A certain kind of maps

A model class

Ex. programs, pre/post-
conditions, expectations

38

Take Away

PL problems

Learning problems

Constraints

Loss

A certain kind of maps

A model class

Ex. programs, pre/post-
conditions, expectations

Learned candidates

38

Take Away

PL problems

Learning problems

Constraints

Loss

A certain kind of maps

A model class

Ex. programs, pre/post-
conditions, expectations

Learned candidates

Verifier
Sound
resultsSatisfied

Not Satisfied

Counter-example data

38

