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Our Contribution

- A program logic for proving negative dependence
- Extending probabilistic separation logic [Barthe et al. 2020]
- Show its applications to various probabilistic data structure
- Bloom filter [Bloom 1970]
- Permutation Hashing [Ding and Konig 201 1]
- Fully-dynamic dictionary [Bercea and Even 201 9]
- Repeated balls-into-bins [Becchetti et al. 201 9]
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Negative Covariance

Negative Regression
Negative Association (NA)

Negative Right Orthant Dependence

Negative Quadrant Dependence
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Let X, ..., X, be non-negative random variables.

A. Negative Covariance:
Forany I C (1,...,n}, E[] [ X1 < | ] ELX]
i€l i€l

05:-0+05-0<L£0.5-0.5

C. Negative Association:

coin 1

colin 2






Examples of NA random variables:




Examples of NA random variables:

- Deterministic variables




Examples of NA random variables:

- Deterministic variables

- Independent random variables




Examples of NA random variables:
- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to |




Examples of NA random variables: one-hot vectors

- Deterministic variables X1 X, X5

- Independent random variables nnn
- Bernoulli random variables that sum to | nnn




Examples of NA random variables: one-hot vectors

- Deterministic variables X1 X, X5

- Independent random variables nnn

- Bernoulli random variables that sum to | nnn
- Uniformly random permutations nnn
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- Deterministic variables X1 X, X5

- Independent random variables nnn
- Bernoulli random variables that sum to | nnn

- Uniformly random permutations

shufile(cards);
Y; = cardsi]
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Closure of Negative Association: nn
- Subsets of NA variables are NA

shuftle(cards);
- Union of independent NA sets is also NA Y. = cards]i]

- Monotonically increasing map preserves NA nn

if two processes independent,
X, X5, Y, ..., Y } satisfies NA

L.

ZI=X1+Y1 ZZZXQ'YQ

2,2y, Ys, ..., Y }satisfies NA
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Proving NA for our example

.|.|

# Simple scheduler

tasks = [A, ..., Z]

loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3) One-Hot NA Independent union NA

loads = loads + new_load Monotone map NA

overflow = [n >= 10 for n in loads] Monotone map NA

Entries in overflow are NA!
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Separation Logic

- A flexible framework to reason about sharing and separation

- Program logic

- Judgement:{P}C{Q}

- Assertion logic (logic of Bunched Implications, Bl)

e P UV = pedP | T |LIPAO|PVO|P=>0OIP«x0F i 0}

- Qutline:

- Intuition of P + O

- Semantics of Bl

£

- Programs and atomic propositions

- Proof rules of program logic
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Structures for Interpreting Bl

- A Kripke resource monoid is a set M with

- a partial binary operation ©c: M X M — M that is
- associative: x 0 (y 0 z) =(x 0 y) 0 z,
- commutative:y O X =X Oy,

- an identity elemente e M:e 0 X =x 0 e = X,

- a pre-order C on M:

- transitive: if x C yand y C z, then x C z;

- reflexive: x C x for any x
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Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p) .
- - P n

- mEPAQiffmEPandmkE Q P=x(Q

- m E P = Q iff exist m,, m, with m; o m, defined and m; © m, C m such

that m F Pand m, E Q

- In the independence model:

- m E (X) = (Y) iff variables X, Y are independent in m
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Program logic

- Judgement:{P}C{Q}
- Programs:
- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model
- pEUgle)

- u F Detm¢(e)

- ukFe~e

- uk(e)iffuFe~e
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Proof Rules

x, ¢ FV(9)
F{¢} xr & Us {¢ * Us(x,)}

RSAMP*

- {p}cly) ¢ does not modifies FV(n) side conditions

FRAME

= {¢ = nicly * n}
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on assertion logic

(X)) = (X5) = ... = (X)) asserts X, ..., X, independent in distribution model
Can we add another conjunction ® such that (X;) ® (X,) ® ... ® (X )
asserts X, ..., X, NA?
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Solution for the Challenge

- ABI frame [Docherty 2019] is a set M with
- a binary operation © : M X M — SP(M) thatis
- associative

- commutative

- an identity element £ C M compatible with © and C
- a pre-order C on M

Uy @ u, = {pu | variables in py, u, satisfy some sort of NA in u }
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Examples of NA random variables: P+QFP®(

- Deterministic variables N

- Independent random variables = OHN([xo, . . ., xN-1]) = yéx:)()(xﬂ
- Bernoulli random variables that sum to |

- Uniformly random permutations

All valid axioms! Mono-map Axiom

N [K,+1 N N
Closure of Negative Association: = @0( /\O <xy,a>) A /\Oyy = fy (%y.00- -2 Xpk, ) = §>l=<)0<yy>
a= y=
- Subsets of NA variables are NA when fi,..., fn all monotone or all antitone

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA
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on program logic

xr € FV(¢)
RSAMmP*
A RSamp rule for NA? F{#} xr & Us {¢ * Us(x;)}

A frame rule for NA? NA preserved under monotone maps

¢ 1S a monotonically increasing map from dom(¢) to dom(y)
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{9 ® nicly ® 7}



Independence — Negative Association

on program logic

A frame rule for NA

—{d}c{y} ¢ does not modifies FV(n) side conditions

—{p ® nicly ® nj



Independence — Negative Association

on program logic

A frame rule for NA

(v) obtained from a monotonically increasing map on dom(¢)
= (¢ cio) ¢ does not modifies FV(n) side conditions

—{p @ nicl) ® n}



Independence — Negative Association

on program logic

A frame rule for NA

(v) obtained from a monotonically increasing map on dom(¢)
= (¢ cio) ¢ does not modifies FV(n) side conditions

NA-FRAME
¢ ® nicl) ® nj



APPLICATIONS

to the motivating example
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F{p Ab ~ tt} c {¢} = ¢ — Detm(b)
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AMP

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {9 * Us(xy)}

N
U(®jcq0.12110ads[i] = @;cr010) new_load[i]) A ...} | OHN([xo,...,xN-1]) = @)(Xﬂ
e
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loads = loads + new load
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{®ie{0,1,2}|°ads[i] A Detm[i] A Detm|[task] A (i < |task| + 1)}

new_load = one-hot(3) - xr € FV(9)
AMP

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {¢ * Us(x,)}

N
{U(®jci0.12)l0ads[i] *+ @191y new_load[i]) A ...} = OHN([x0, ..., xN-1]) = é@o(xy)
b

{((@ie{o,l,z}loads[i]) ® (@ie{o,laz}new_load[i])) A } P+«OFP®Q

updates = loads + new_loads

. Mono-map Axiom
{@ie{o,laz}UPdateS[l] N ... }

_ DASSN
loads = updates - {U[eqa/xq]} xq — eq {V)}
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taeks — A, ..., Z]

loads = [0, O, O] SCOpIﬂg baCk 1

i=0
{@ie{o,l’z}loads[i] A Detm]i] A Detm|task] }
while 1 < |tasks]|:
i=1+1
{®;cr0.1.0110ads[i] A Detm[i] A Detm[task] A (i < |task| + 1)}
new_load = one-hot(3)
loads = loads + new_load

{®;c(0.12yl0ads[i] A Detm[i] A Detm|task] |
{@ie{o,laz}loads[i] A Detm|i] A Detm|[task] A (i > |task])}

overflow = [n >= 10 for n in loads]
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loads = [0, O, O] SCOpIﬂg baC|< 1

i=0
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while 1 < |tasks]|:
i=1+1
{®;cr0.1.0110ads[i] A Detm[i] A Detm[task] A (i < |task| + 1)}
new_load = one-hot(3)
loads = loads + new_load

{®;c(0.12yl0ads[i] A Detm[i] A Detm|task] |
{@ie{o,laz}loads[i] A Detm|i] A Detm|[task] A (i > |task])}

overflow = [n >= 10 for n in loads]
Mono-map Axiom
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loads = [0, O, O] SCOpIﬂg baC|< 1

i=0
{®;c(0.10)l0ads[i] A Detm[i] A Detm|task] }
while 1 < |tasks]|:
i=1+1
{®;cr0.1.0110ads[i] A Detm[i] A Detm[task] A (i < |task| + 1)}
new_load = one-hot(3)
loads = loads + new_load

{®;c(0.12yl0ads[i] A Detm[i] A Detm|task] |
{@ie{o,laz}loads[i] A Detm|i] A Detm|[task] A (i > |task])}

overflow = [n >= 10 for n in loads]

o I\/l _ A .
{®;c(0.12 0verflow]i] | ONO-Map AXIOM
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More contents In our paper

- M-Bl logic: a sound and complete extension of Bl that
supports ordered separating conjunctions
- Details of the (M)-Bl model for negative association
- Details of the NA-Frame rule
- Applications to various probabilistic data structure
- Bloom filter
- Permutation Hashing [Ding and Konig 201 1]
- Fully-dynamic dictionary [Bercea and Even 201 9]
- Repeated balls-into-bins [Becchetti et al. 201 9]
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