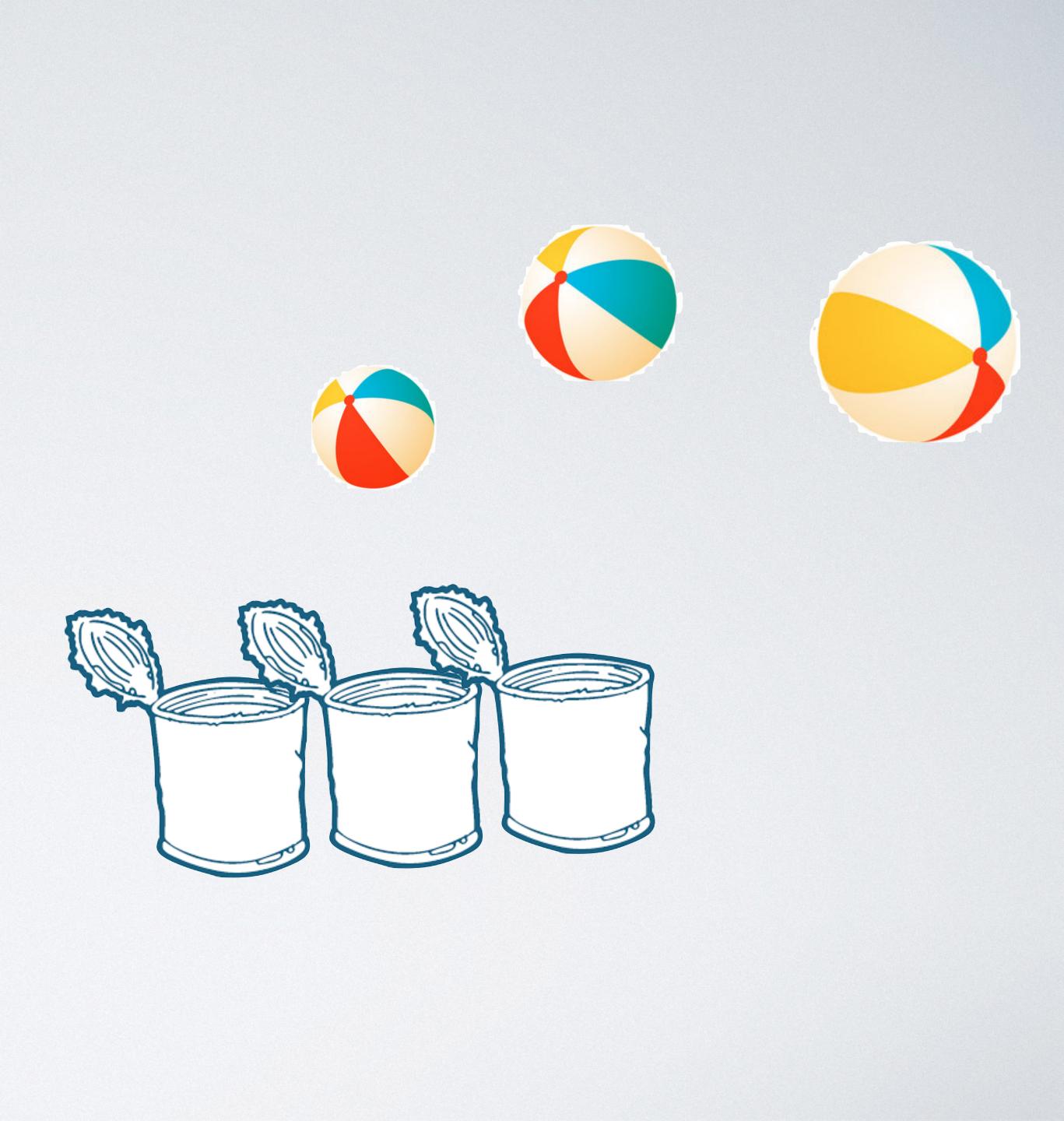
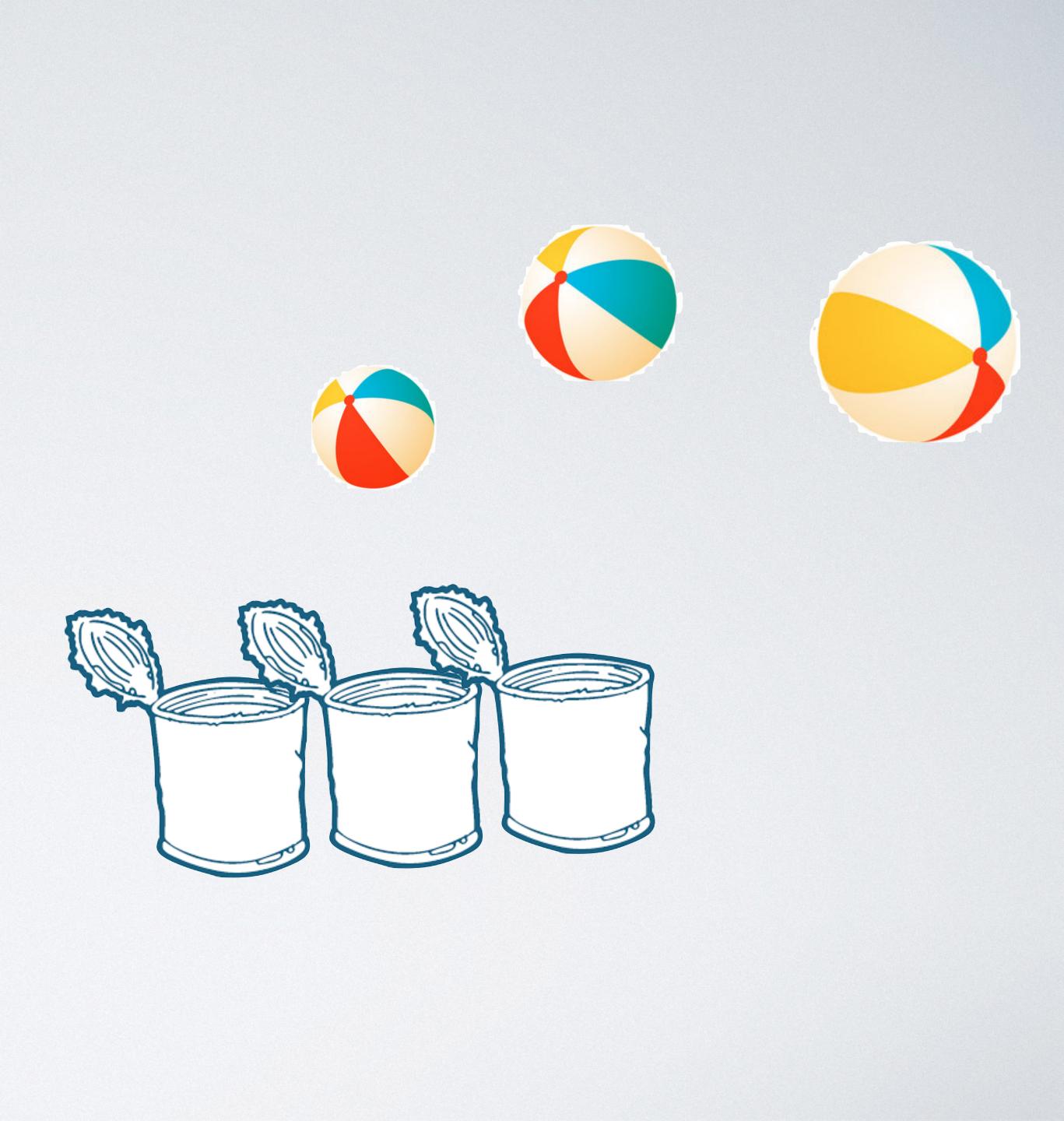
A SEPARATION LOGIC FOR NEGATIVE DEPENDENCE

Jialu Bao at PLDG, Oct. 6, 2021 Joint work with Marco Gaboardi, Justin Hsu, Joseph Tassarotti



Bad events: collision, overflow, ...



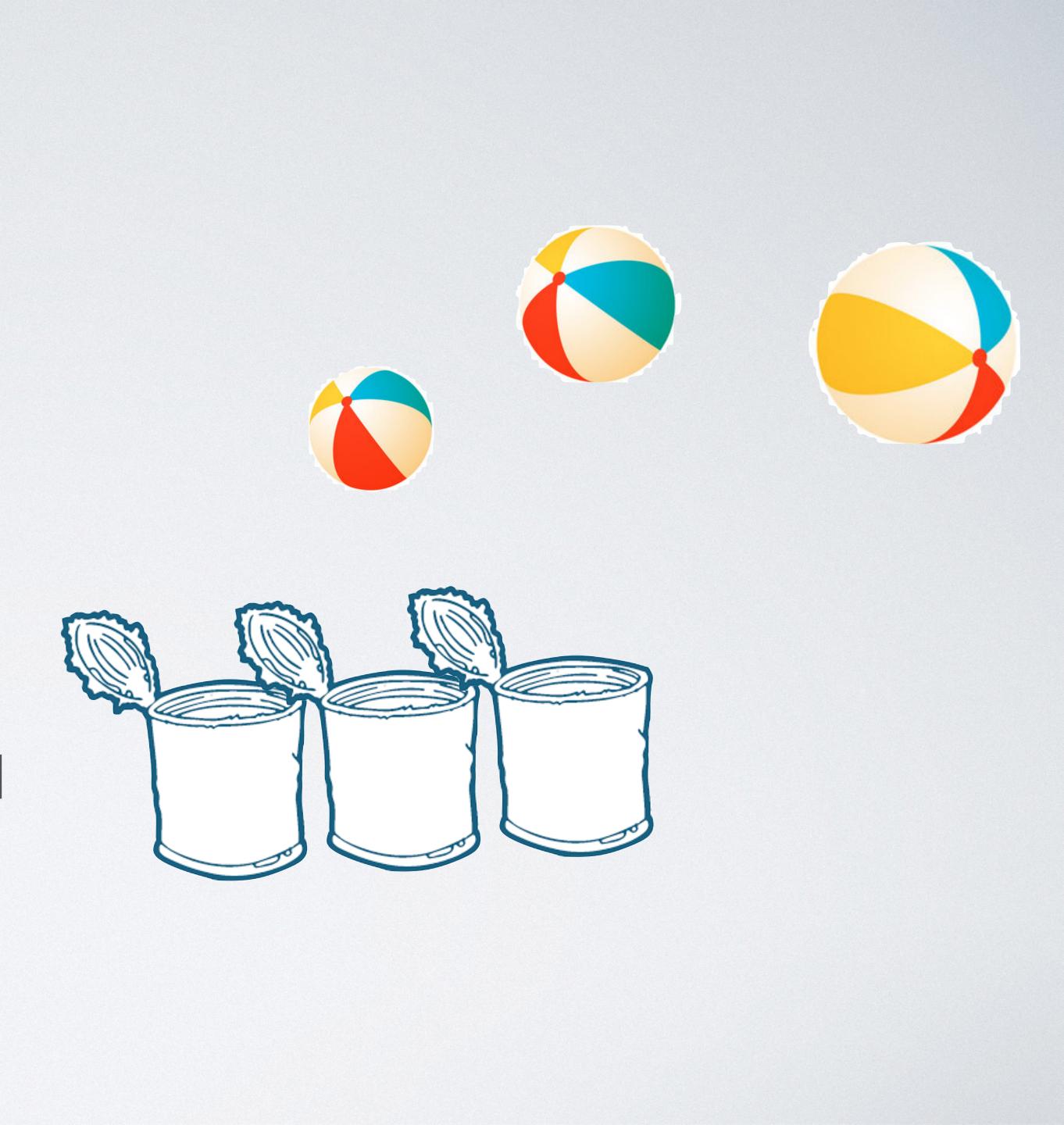
Bad events: collision, overflow, ...

tasks = [A, ..., Z] loads = [0, 0, 0] for task in tasks: bin = uniform([0,1,2]) loads[bin] = loads[bin] + 1 overflow = [n >= 10 for n in loads]

Bad events: collision, overflow, ...

tasks = [A, ..., Z] loads = [0, 0, 0] for task in tasks: bin = uniform([0,1,2]) loads[bin] = loads[bin] + 1 overflow = [n >= 10 for n in loads]

$$\frac{Prob}{\sum_{i} \text{overflow}[i] \ge 1}_{i} \le ?$$



Concentration bound:

Concentration bound: $Y = \sum_{i}^{n} Y_{i}$, where Y_{i} are independent

Concentration bound: $Y = \sum_{i}^{n} Y_{i}, \text{ where } Y_{i} \text{ are independent}$ $\mathbb{E}[Y]$

Concentration bound: $Y = \sum_{i}^{n} Y_{i}, \text{ where } Y_{i} \text{ are independent}$ $\mathbb{E}[Y]$

 $Prob[|Y - \mathbb{E}[Y]| \ge M] \le f(n, M)$

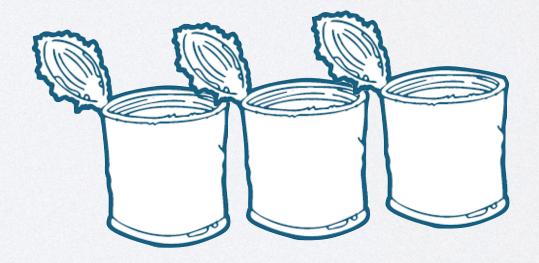
Concentration bound: $Y = \sum_{i}^{n} Y_{i}, \text{ where } Y_{i} \text{ are independent}$ $\mathbb{E}[Y]$

 $Prob[|Y - \mathbb{E}[Y]| \ge M] \le f(n, M)$

Concentration bound: $Y = \sum Y_i$, where Y_i are independent $\mathbb{E}[Y]$

 $Prob[|Y - \mathbb{E}[Y]| \ge M] \le f(n, M)$

Prob $\sum \text{overflow}[i] \ge 1 \le ?$



The bins' loads are not independent!

Concentration bound: $Y = \sum_{i}^{n} Y_{i}, \text{ where } Y_{i} \text{ are independent}$ $\mathbb{E}[Y]$

 $Prob[|Y - \mathbb{E}[Y]| \ge M] \le f(n, M)$

Prob $\sum \text{overflow}[i] \ge 1 \le ?$

The bins' loads have negative dependence!

Concentration bound: $Y = \sum_{i} Y_{i}$, where Y_{i} are negative dependence $\mathbb{E}[Y]$

 $Prob[|Y - \mathbb{E}[Y]| \ge M] \le f(n, M)$

Prob $\sum \text{overflow}[i] \ge 1 \le ?$

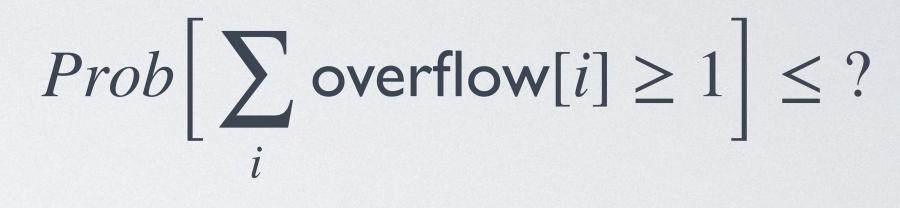


The bins' loads have negative dependence!

Concentration bound: $Y = \sum_{i} Y_{i}$, where Y_{i} are negative dependence $\mathbb{E}[Y]$

$Prob[|Y - \mathbb{E}[Y]| \ge M] \le f(n, M)$

How to prove negative dependence formally?



The bins' loads have negative dependence!

Our Contribution

Our Contribution

- A program logic for proving negative dependence
 - Extending probabilistic separation logic [Barthe et al. 2020]

ve dependence logic [Barthe et al. 2020]

Our Contribution

- A program logic for proving negative dependence
 - Extending probabilistic separation logic [Barthe et al. 2020]
- Show its applications to various probabilistic data structure
 - Bloom filter [Bloom 1970]
 - Permutation Hashing [Ding and König 2011]
 - Fully-dynamic dictionary [Bercea and Even 2019]
 - Repeated balls-into-bins [Becchetti et al. 2019]

ve dependence logic [Barthe et al. 2020] obabilistic data structure

onig 2011] nd Even 2019] i et al. 2019]

NEGATIVE DEPENDENCE

Probabilities 101

s∈S

Probabilities 101 A distribution over a finite set S is a function $\mu : S \rightarrow [0,1]$ such that $\sum \mu(s) = 1$

s∈S

Probabilities 101 A distribution over a finite set S is a function $\mu : S \rightarrow [0,1]$ such that $\sum \mu(s) = 1$

Expected value of a (discrete) random variable X in distribution μ is $\sum \mu(X = v) \cdot v$

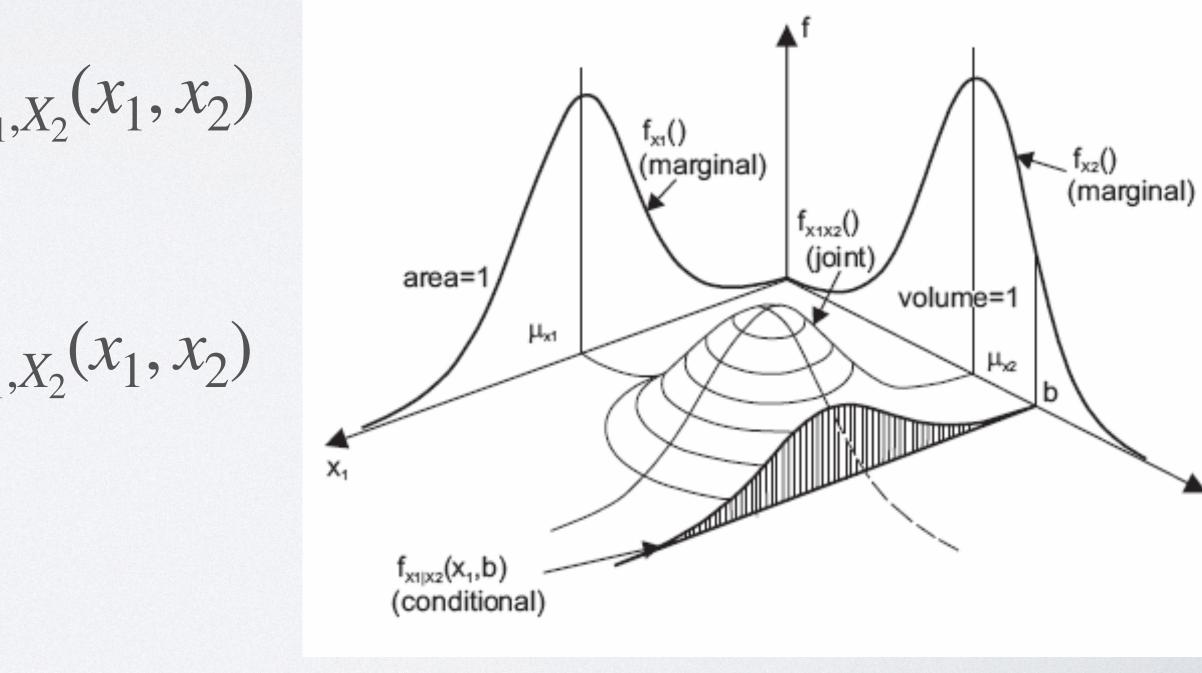
V

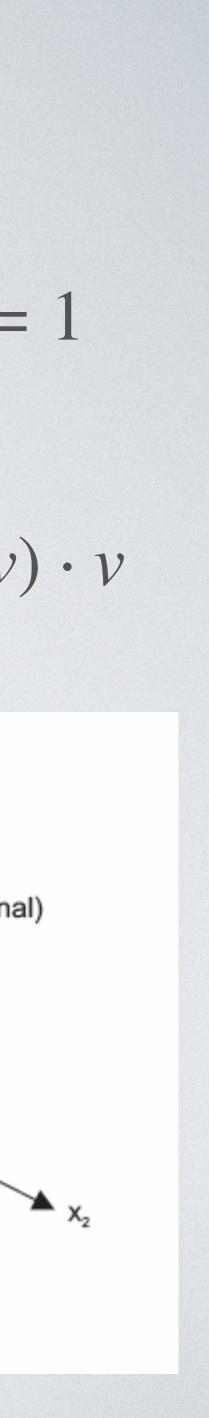
Probabilities 101 A distribution over a finite set S is a function $\mu: S \to [0,1]$ such that $\sum \mu(s) = 1$ s∈S

Marginal distribution $f_{X_1}(x_1) = \sum f_{X_1,X_2}(x_1,x_2)$ $x_2 \in X_2$

$$f_{X_2}(x_2) = \sum_{x_1 \in X_1} f_{X_1}$$

Expected value of a (discrete) random variable X in distribution μ is $\sum \mu(X = v) \cdot v$



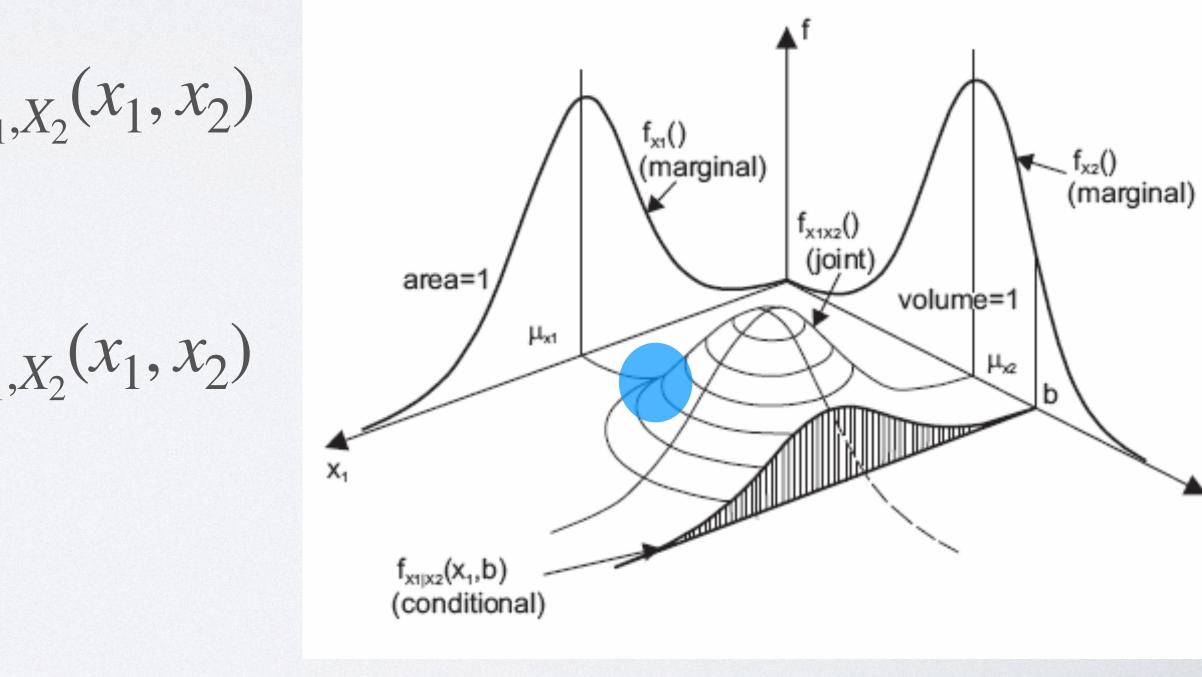


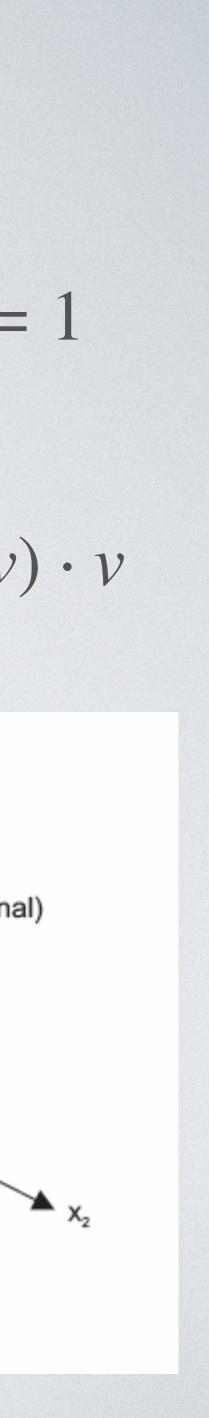
Probabilities 101 A distribution over a finite set S is a function $\mu: S \to [0,1]$ such that $\sum \mu(s) = 1$ s∈S

Marginal distribution $f_{X_1}(x_1) = \sum f_{X_1,X_2}(x_1,x_2)$ $x_2 \in X_2$

$$f_{X_2}(x_2) = \sum_{x_1 \in X_1} f_{X_1}$$

Expected value of a (discrete) random variable X in distribution μ is $\sum \mu(X = v) \cdot v$



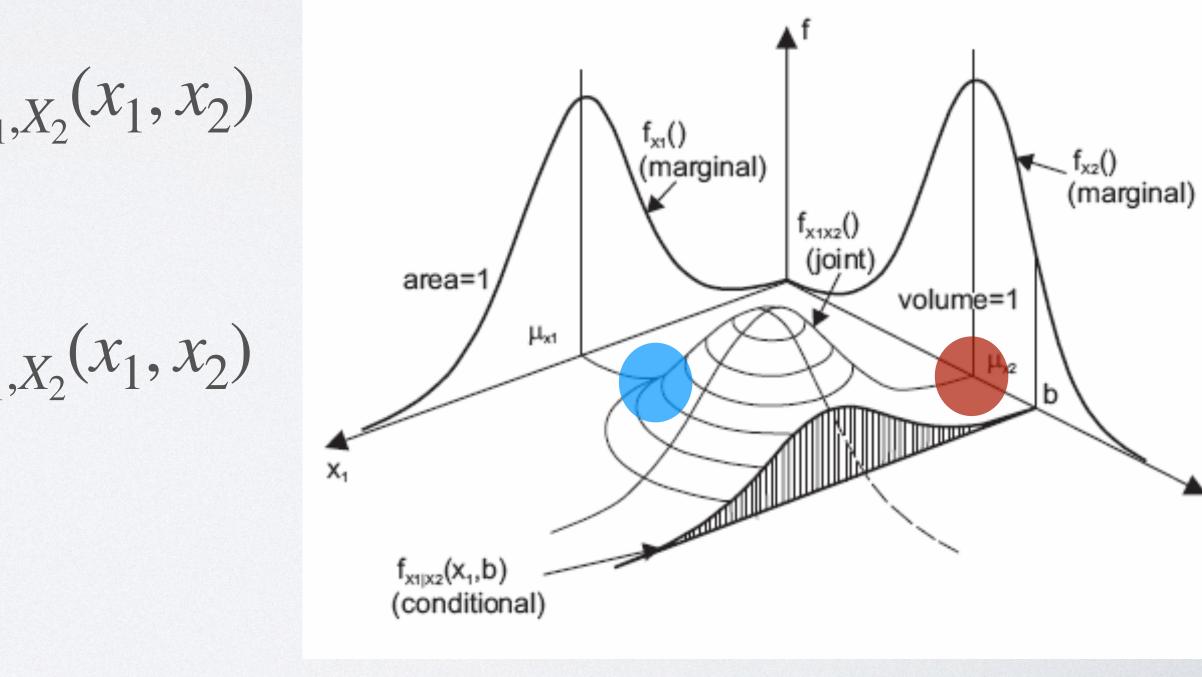


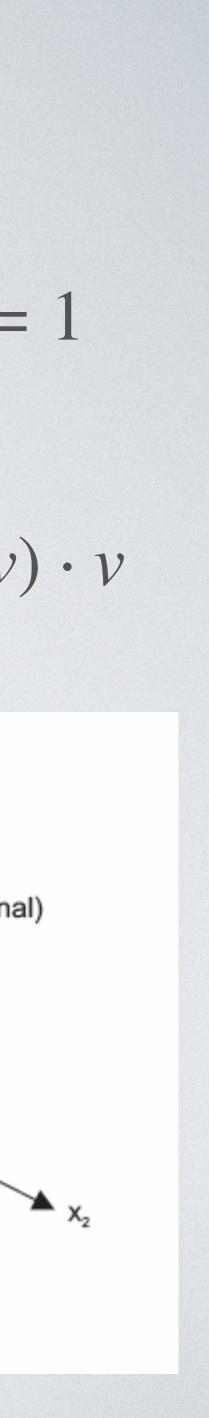
Probabilities 101 A distribution over a finite set S is a function $\mu: S \to [0,1]$ such that $\sum \mu(s) = 1$ s∈S

Marginal distribution $f_{X_1}(x_1) = \sum f_{X_1,X_2}(x_1,x_2)$ $x_2 \in X_2$

$$f_{X_2}(x_2) = \sum_{x_1 \in X_1} f_{X_1}$$

Expected value of a (discrete) random variable X in distribution μ is $\sum \mu(X = v) \cdot v$





Negative Dependence

Negative Covariance

Negative Association (NA)

Negative Quadrant Dependence

Negative Dependence

Negative Regression

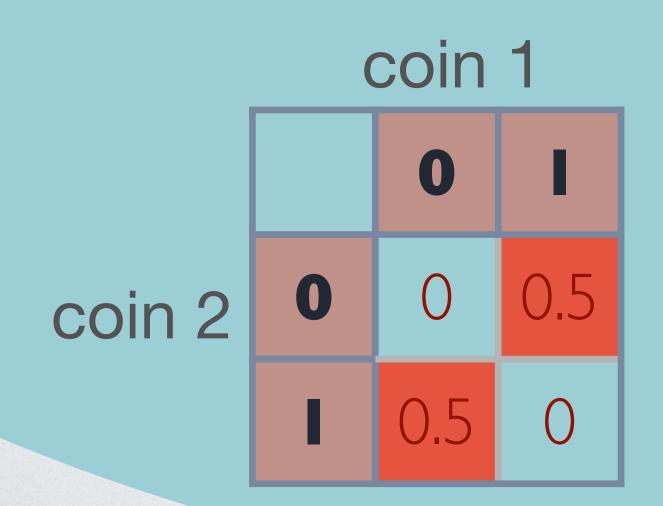
- Negative Right Orthant Dependence

Negative Association

A. Negative Covariance: For any $I \subseteq \{1, ..., n\}, \mathbb{E}[\prod X_i] \leq \prod \mathbb{E}[X_i]$ i∈I i∈I

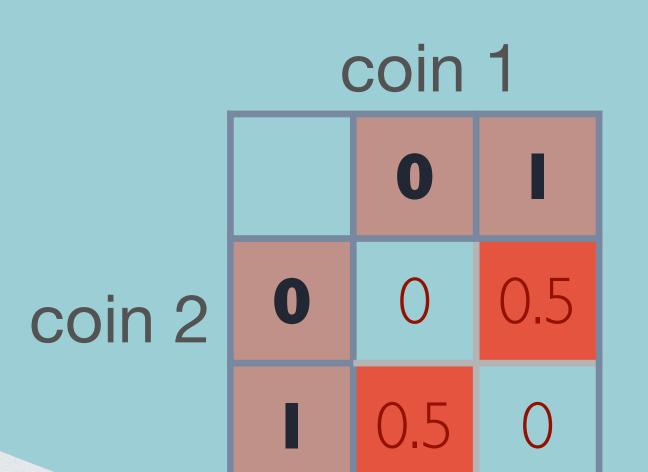
Negative Association

A. Negative Covariance: For any $I \subseteq \{1, ..., n\}, \mathbb{E}[\prod X_i] \leq \prod \mathbb{E}[X_i]$ i∈I i∈I $0.5 \cdot 0 + 0.5 \cdot 0 \le 0.5 \cdot 0.5$



Negative Association

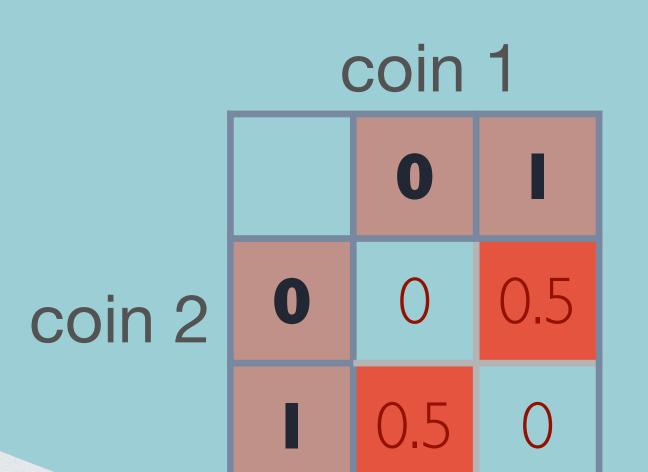
A. Negative Covariance: For any $I \subseteq \{1, ..., n\}$, $\mathbb{E}[X_i] \leq \mathbb{E}[X_i]$ i∈I i∈I $0.5 \cdot 0 + 0.5 \cdot 0 \le 0.5 \cdot 0.5$



Negative Association

B. For any $I \subseteq \{1, ..., n\}$, for any family of non-negative monoto functions $\{f_i\}_i$ that are all decreasing or all increasing, $\mathbb{E}[f_i(X_i)] \le \mathbb{E}[f_i(X_i)]$ i∈I i∈I

A. Negative Covariance: For any $I \subseteq \{1, ..., n\}$, $\mathbb{E}[X_i] \leq \mathbb{E}[X_i]$ i∈I i∈I $0.5 \cdot 0 + 0.5 \cdot 0 \le 0.5 \cdot 0.5$

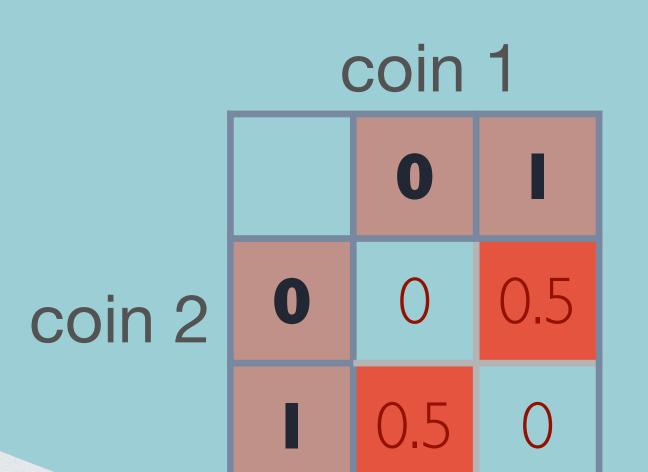


Negative Association

B. For any $I \subseteq \{1, ..., n\}$, for any family of non-negative monoto functions $\{f_i\}_i$ that are all decreasing or all increasing, $\mathbb{E}[f_i(X_i)] \le \mathbb{E}[f_i(X_i)]$ $f_i: \mathbb{R}^{|J|} \to \mathbb{R}$ i∈I i∈I

 $i \in J \subseteq I$

A. Negative Covariance: For any $I \subseteq \{1, ..., n\}, \mathbb{E}[X_i] \leq \mathbb{E}[X_i]$ i∈I i∈I $0.5 \cdot 0 + 0.5 \cdot 0 \le 0.5 \cdot 0.5$



Negative Association

B. For any $I \subseteq \{1, ..., n\}$, for any family of non-negative monoto functions $\{f_i\}_i$ that are all decreasing or all increasing, $\mathbb{E}[f_i(X_i)] \le \mathbb{E}[f_i(X_i)]$ $f_i: \mathbb{R}^{|J|} \to \mathbb{R}$ i∈I i∈I $i \in J \subseteq I$

C. Negative Association:

For any disjoint $I, J \subseteq \{1, ..., n\}$, any non-negative functions $f : \mathbb{R}^{|I|} \to \mathbb{R}$ and $g : \mathbb{R}^{|J|} \to \mathbb{R}$ that are both decreasing or both increasing,

> $\mathbb{E}[f(X_i, i \in I) \cdot g(X_i, j \in J)] \le$ $\mathbb{E}[f(X_i, i \in I)] \cdot \mathbb{E}[g(X_i, j \in J)]$

NA: For any disjoint $I, J \subseteq \{1, ..., n\}$, any non-negative monotone functions $f : \mathbb{R}^{|I|} \to \mathbb{R}$ and $g : \mathbb{R}^{|J|} \to \mathbb{R}$ that are both decreasing or both increasing, $\mathbb{E}[f(X_i, i \in I) \cdot g(X_j, j \in J)] \leq$ $\mathbb{E}[f(X_i, i \in I)] \cdot \mathbb{E}[g(X_j, j \in J)]$

- Deterministic variables

- Deterministic variables
- Independent random variables

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I

NA: For any disjoint $I, J \subseteq \{1, \ldots, n\}$, any non-negative monotone functions $f : \mathbb{R}^{|I|} \to \mathbb{R}$ and $g: \mathbb{R}^{|J|} \to \mathbb{R}$ that are both decreasing or both increasing, $\mathbb{E}[f(X_i, i \in I) \cdot g(X_j, j \in J)] \le$ $\mathbb{E}[f(X_i, i \in I)] \cdot \mathbb{E}[g(X_j, j \in J)]$

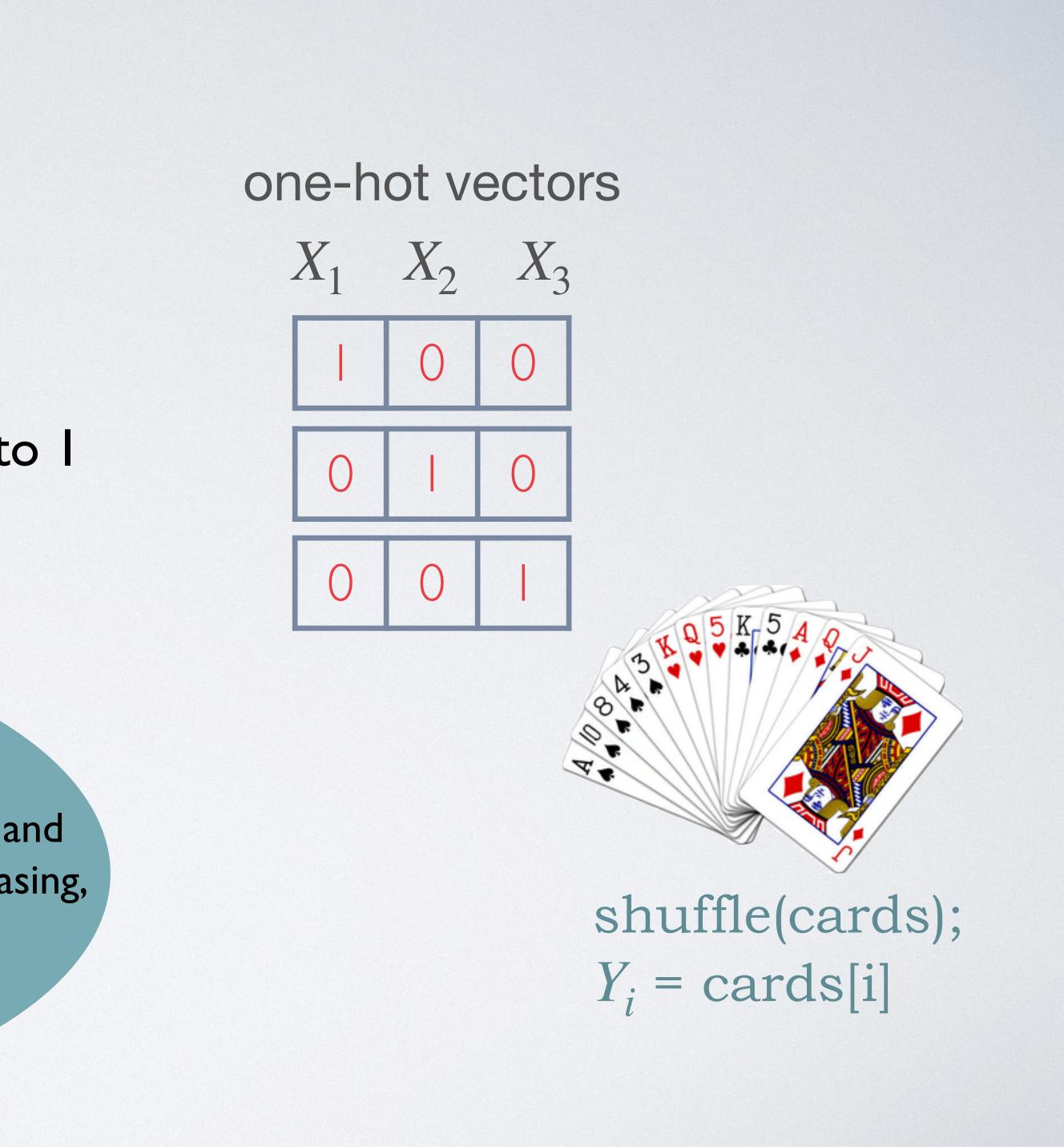
one-hot vectors $X_1 \quad X_2 \quad X_3$ () \bigcirc $\left(\right)$ ()

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I
- Uniformly random permutations

NA: For any disjoint $I, J \subseteq \{1, \ldots, n\}$, any non-negative monotone functions $f : \mathbb{R}^{|I|} \to \mathbb{R}$ and $g: \mathbb{R}^{|J|} \to \mathbb{R}$ that are both decreasing or both increasing, $\mathbb{E}[f(X_i, i \in I) \cdot g(X_j, j \in J)] \le$ $\mathbb{E}[f(X_i, i \in I)] \cdot \mathbb{E}[g(X_j, j \in J)]$

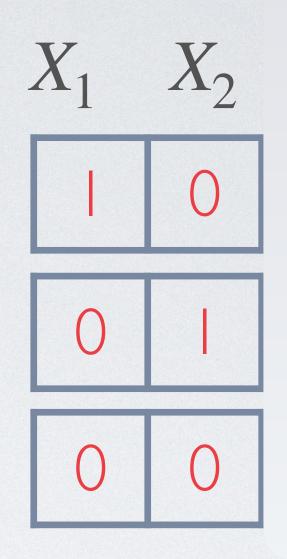
one-hot vectors $X_1 \quad X_2 \quad X_3$ () $\left(\right)$ \bigcirc ()

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I
- Uniformly random permutations

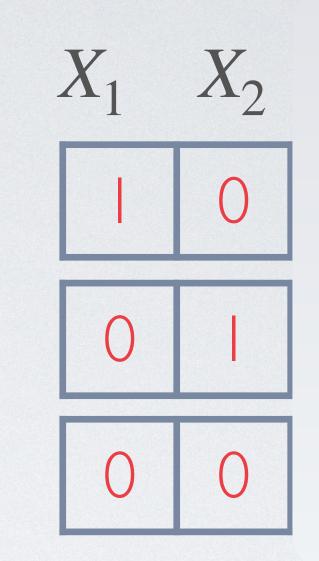


- Subsets of NA variables are NA

- Subsets of NA variables are NA

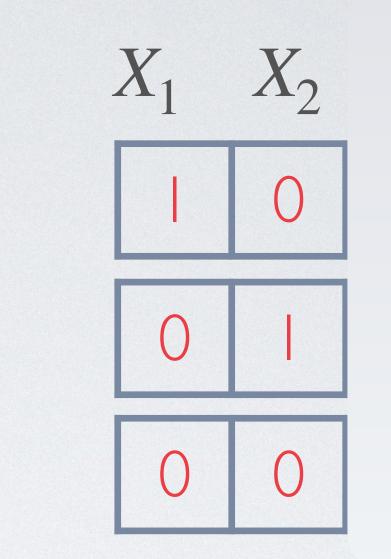


- Subsets of NA variables are NA
- Union of independent NA sets is also NA



- Subsets of NA variables are NA
- Union of independent NA sets is also NA

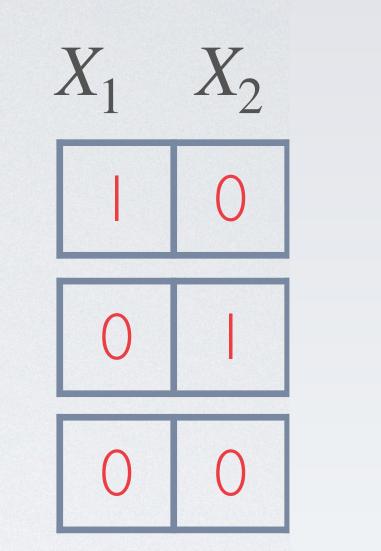
NA: For any disjoint $I, J \subseteq \{1, ..., n\}$, any non-negative monotone functions $f : \mathbb{R}^{|I|} \to \mathbb{R}$ and $g : \mathbb{R}^{|J|} \to \mathbb{R}$ that are both decreasing or both increasing, $\mathbb{E}[f(X_i, i \in I) \cdot g(X_j, j \in J)] \leq$ $\mathbb{E}[f(X_i, i \in I)] \cdot \mathbb{E}[g(X_j, j \in J)]$



shuffle(cards); $Y_i = cards[i]$

- Subsets of NA variables are NA
- Union of independent NA sets is also NA

NA: For any disjoint $I, J \subseteq \{1, ..., n\}$, any non-negative monotone functions $f : \mathbb{R}^{|I|} \to \mathbb{R}$ and $g : \mathbb{R}^{|J|} \to \mathbb{R}$ that are both decreasing or both increasing, $\mathbb{E}[f(X_i, i \in I) \cdot g(X_j, j \in J)] \leq$ $\mathbb{E}[f(X_i, i \in I)] \cdot \mathbb{E}[g(X_j, j \in J)]$

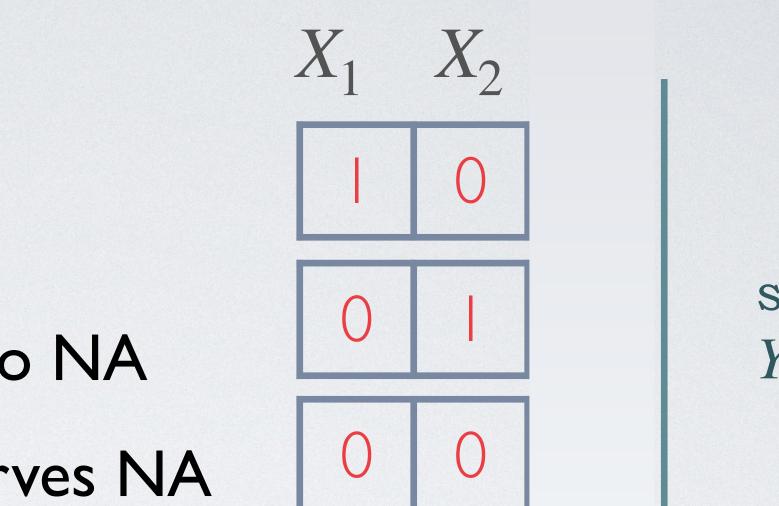


shuffle(cards); $Y_i = cards[i]$

if two processes independent, $\{X_1, X_2, Y_1, ..., Y_n\}$ satisfies NA

- Subsets of NA variables are NA
- Union of independent NA sets is also NA
- Monotonically increasing map preserves NA

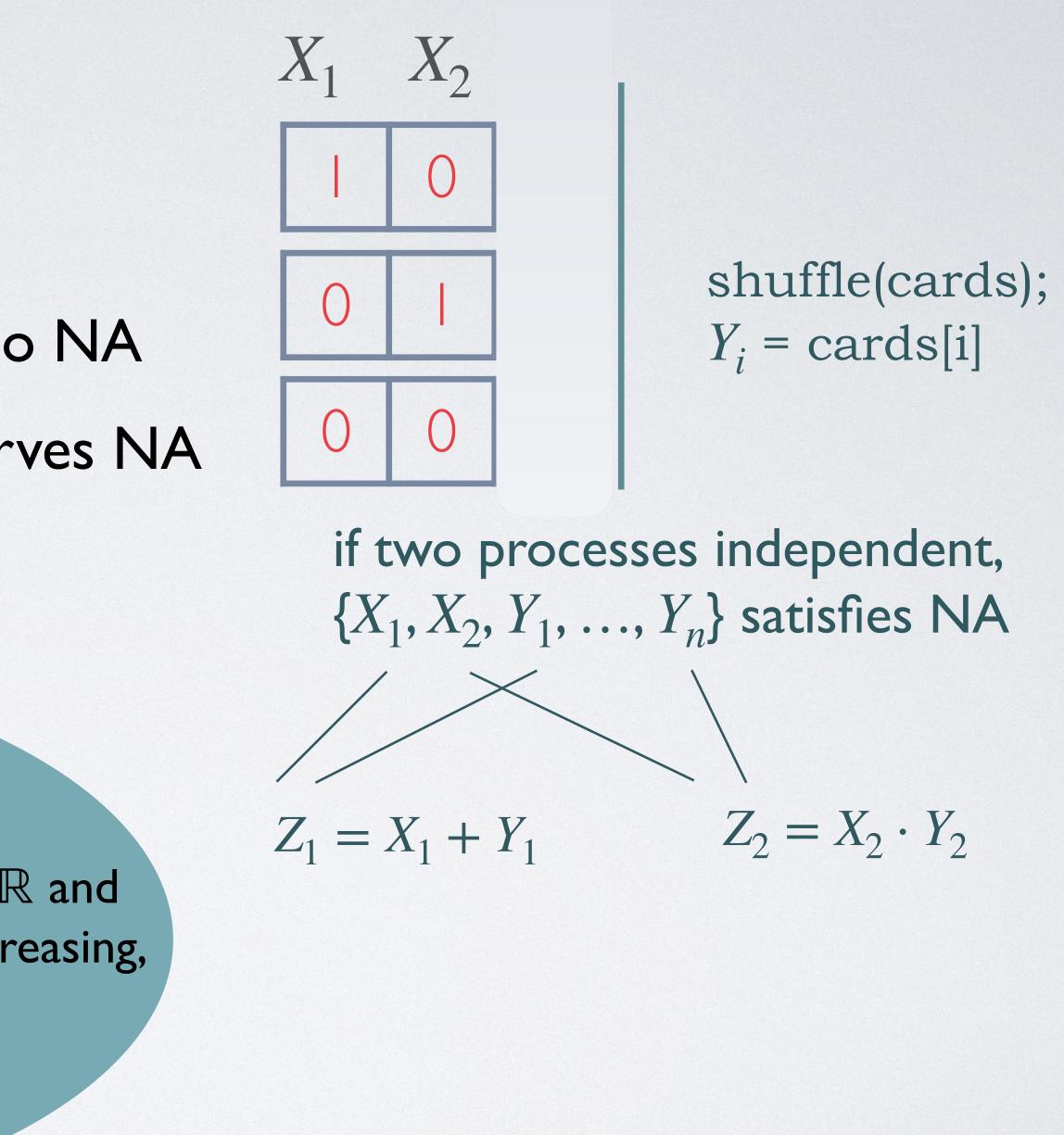
NA: For any disjoint $I, J \subseteq \{1, \ldots, n\}$, any non-negative monotone functions $f : \mathbb{R}^{|I|} \to \mathbb{R}$ and $g: \mathbb{R}^{|J|} \to \mathbb{R}$ that are both decreasing or both increasing, $\mathbb{E}[f(X_i, i \in I) \cdot g(X_j, j \in J)] \le$ $\mathbb{E}[f(X_i, i \in I)] \cdot \mathbb{E}[g(X_j, j \in J)]$



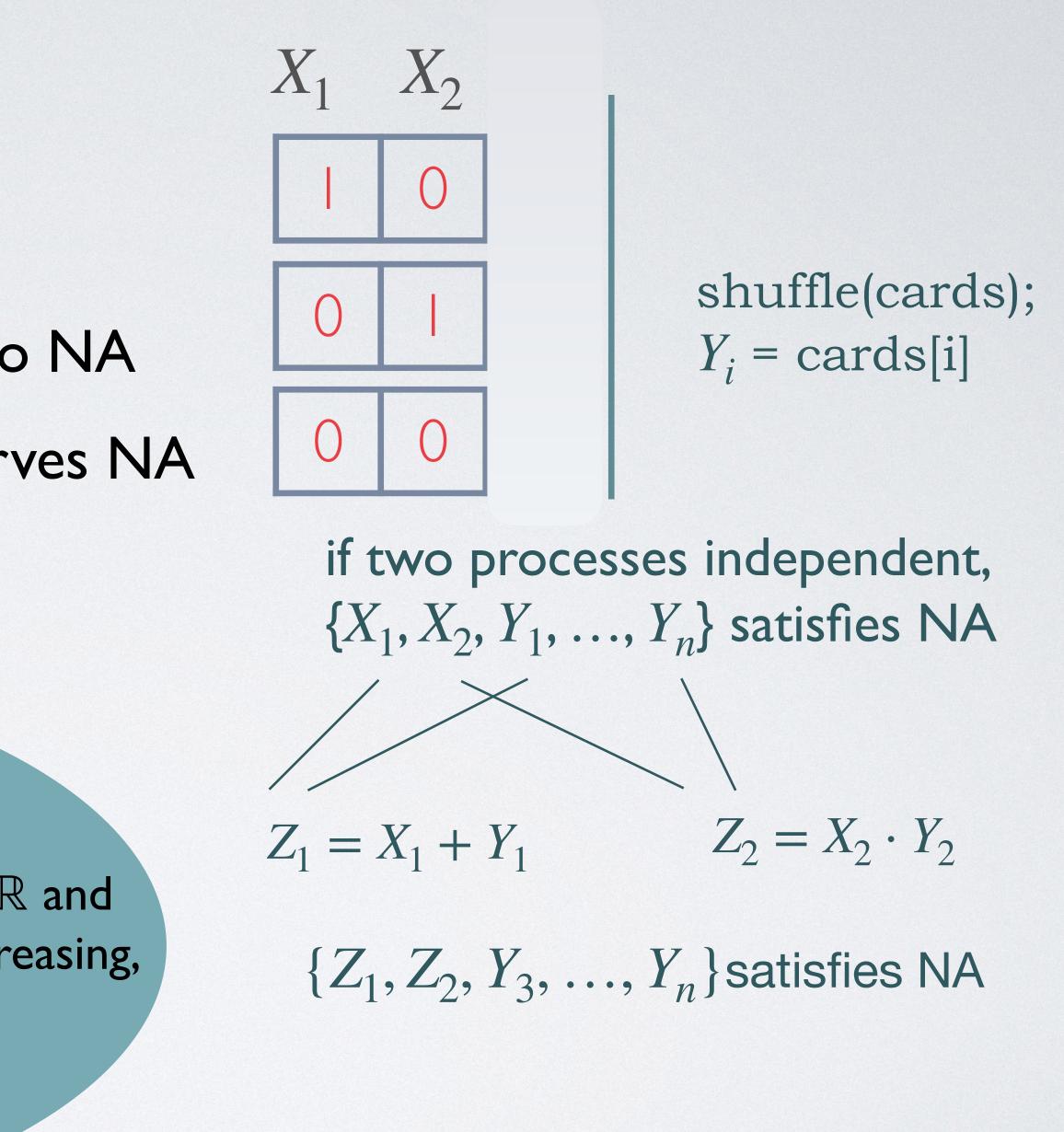
shuffle(cards); $Y_i = cards[i]$

if two processes independent, $\{X_1, X_2, Y_1, ..., Y_n\}$ satisfies NA

- Subsets of NA variables are NA
- Union of independent NA sets is also NA
- Monotonically increasing map preserves NA



- Subsets of NA variables are NA
- Union of independent NA sets is also NA
- Monotonically increasing map preserves NA



Simple scheduler tasks = [A, ..., Z]loads = [0, 0, 0]for task in tasks: bin = uniform([0, 1, 2])loads[bin] = loads[bin] + 1overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

Simple scheduler tasks = [A, ..., Z]loads = [0, 0, 0]for task in tasks: bin = uniform([0, 1, 2])loads[bin] = loads[bin] + 1overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

 $new_load = one-hot(3)$ loads = loads + new_load

Simple scheduler tasks = [A, ..., Z]loads = [0, 0, 0]

for task in tasks:

new_load = one-hot(3)

loads = loads + new_load

overflow = [n >= 10 for n in loads]

Deterministic NA

Simple scheduler tasks = [A, ..., Z]loads = [0, 0, 0]for task in tasks: $new_load = one-hot(3)$ loads = loads + new_load overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

Deterministic NA

Inductive Hypothesis

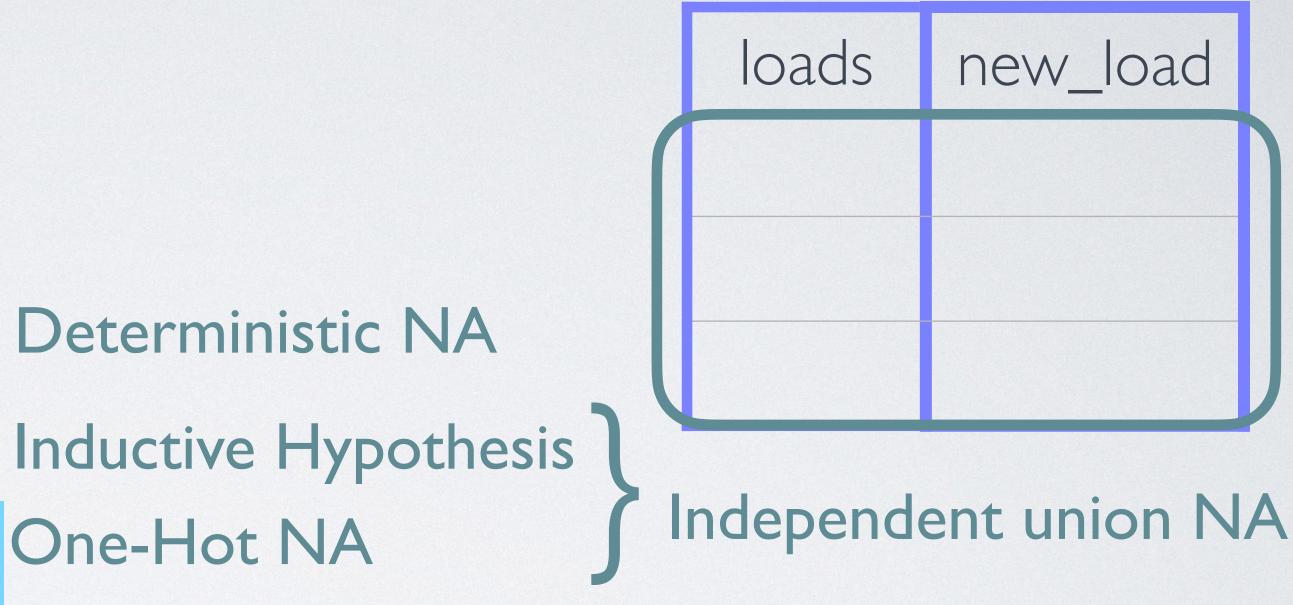
- **Deterministic NA**
- Inductive Hypothesis **One-Hot NA**

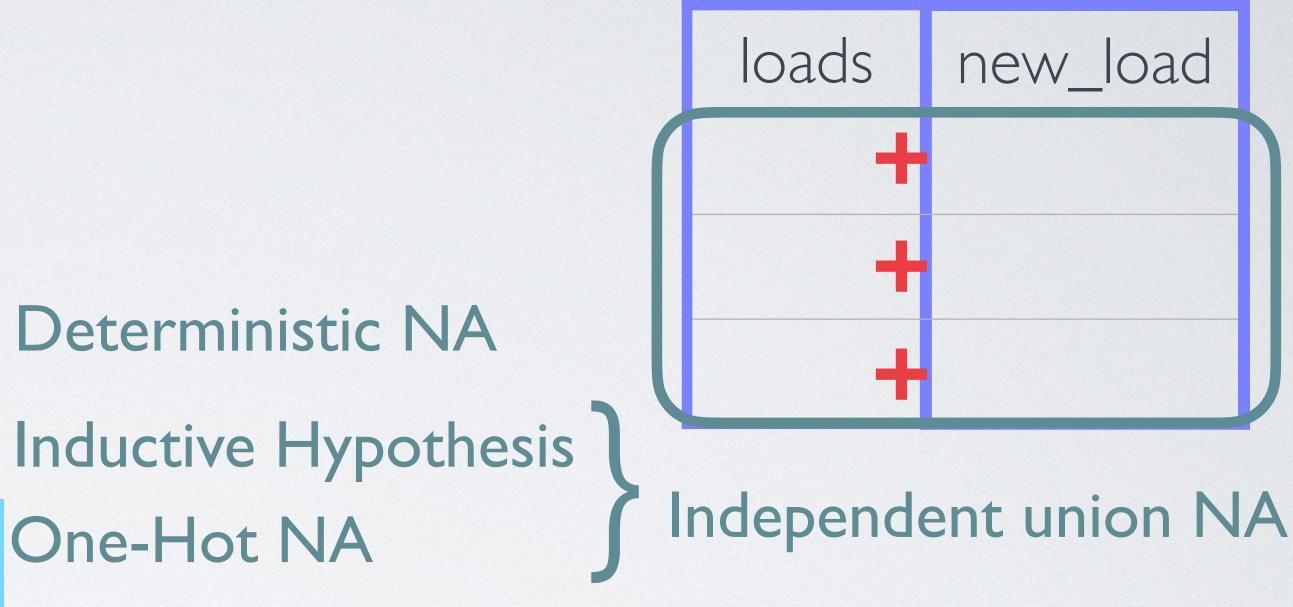
Simple scheduler tasks = [A, ..., Z] loads = [0, 0, 0]for task in tasks: new_load = one-hot(3) loads = loads + new_load overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

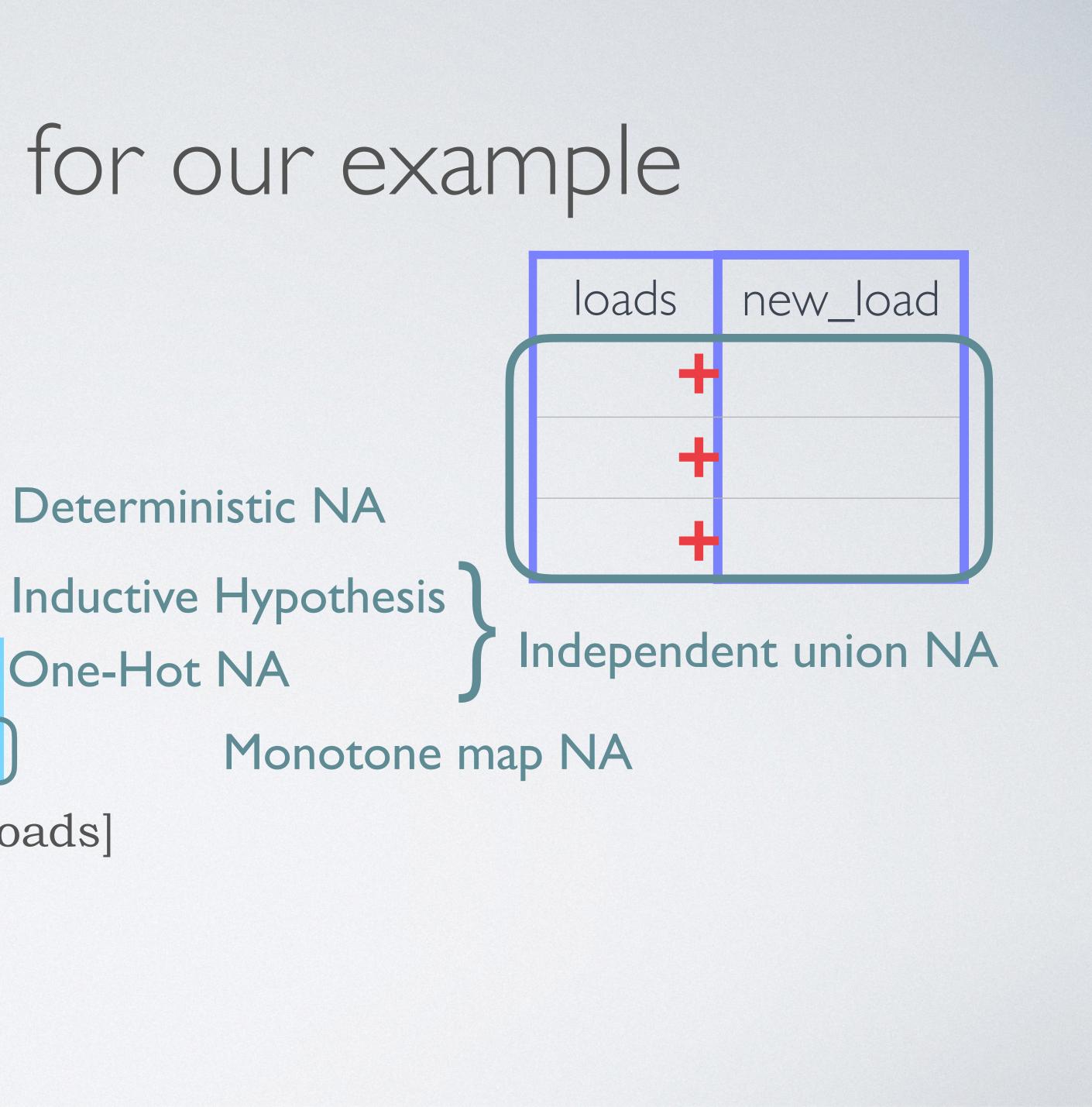
- **Deterministic NA**
- Inductive Hypothesis **One-Hot NA**

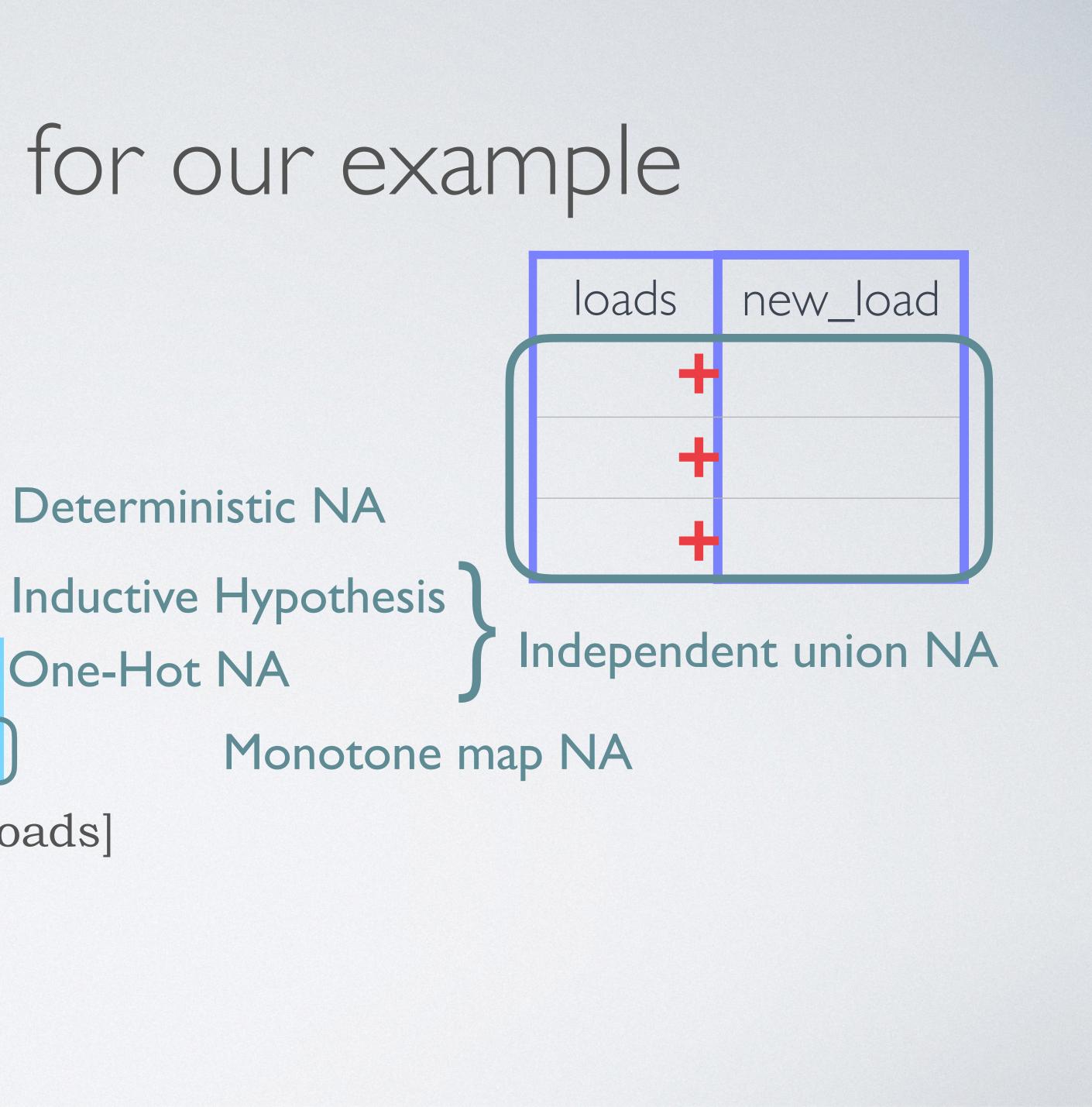
loads

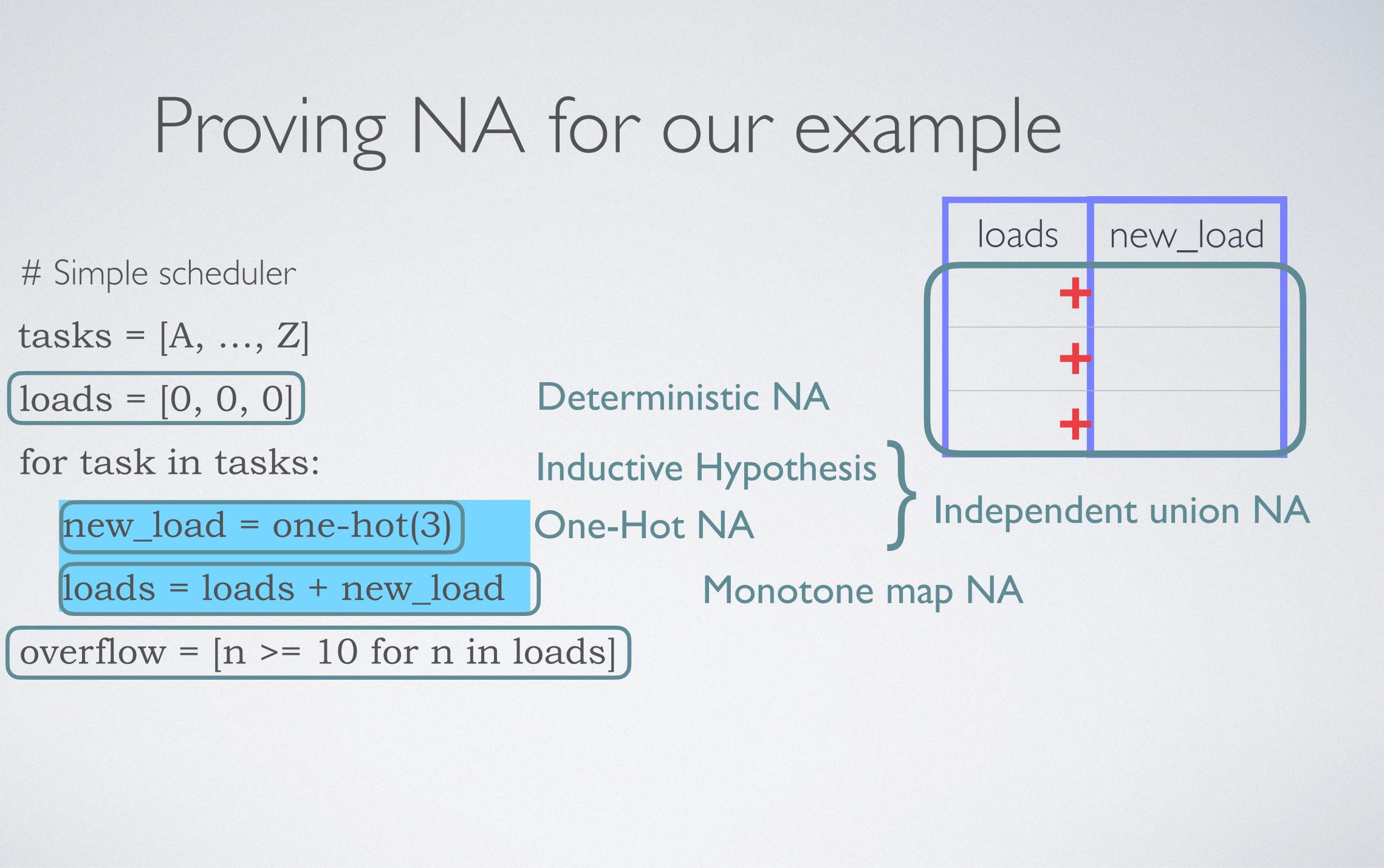
new_load

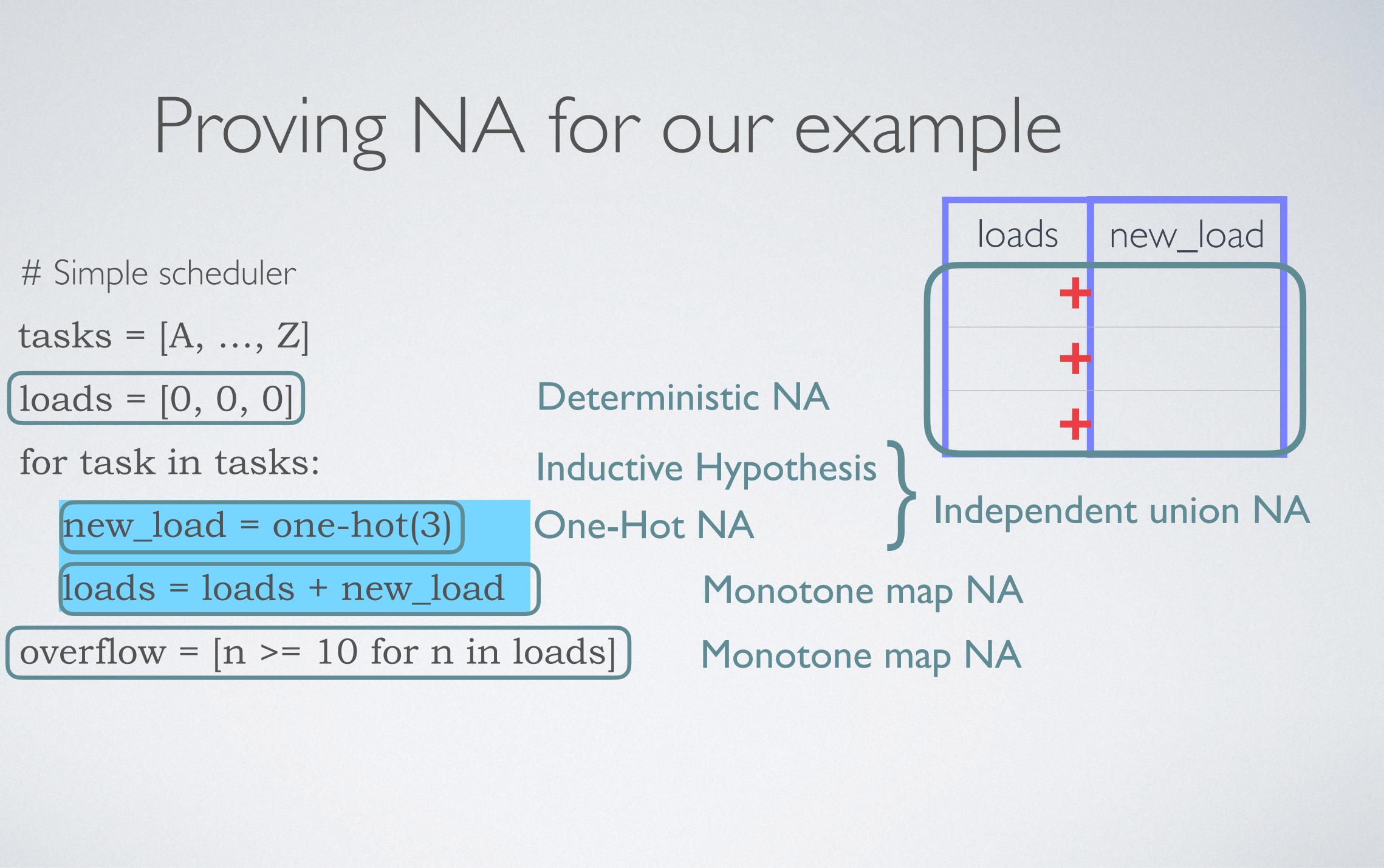


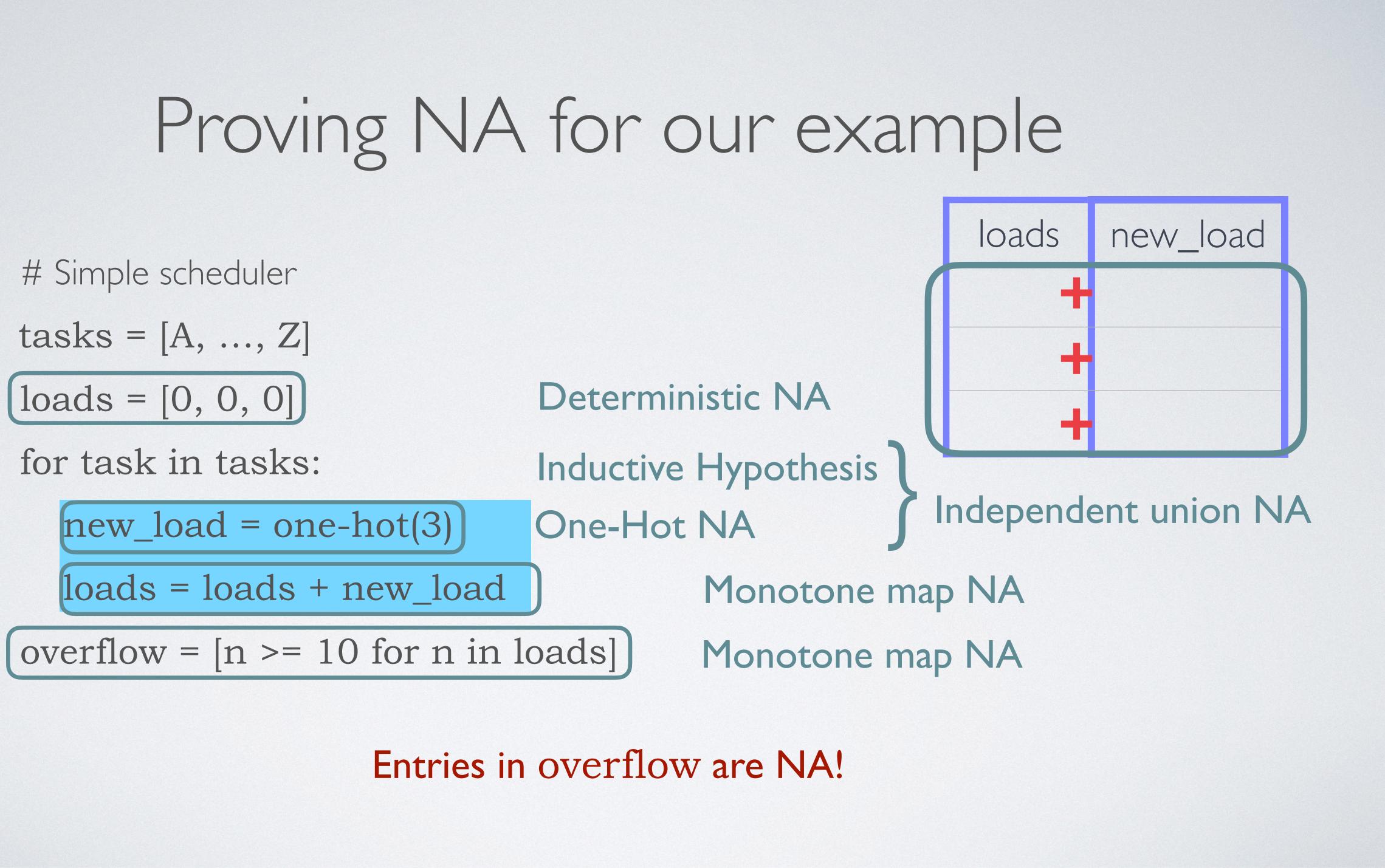












PROBABILISTIC SEPARATION LOGIC

- A flexible framework to reason about sharing and separation

- A flexible framework to reason about sharing and separation
- Program logic
 - Judgement: $\{P\}C\{Q\}$

- A flexible framework to reason about sharing and separation
- Program logic
 - Judgement: $\{P\}C\{Q\}$
- Assertion logic (logic of Bunched Implications, BI) - $P, Q ::= p \in \mathscr{AP} \mid \mathsf{T} \mid \bot \mid P \land Q \mid P \lor Q \mid P \Rightarrow Q \mid P \ast Q \mid P \neg Q$

- A flexible framework to reason about sharing and separation
- Program logic
 - Judgement: $\{P\}C\{Q\}$
- Assertion logic (logic of Bunched Implications, BI)

- $P, Q ::= p \in \mathscr{AP} \mid \top \mid \bot \mid P \land Q \mid P \lor Q \mid P \Rightarrow Q \mid P \ast Q \mid P - \ast Q$

- A flexible framework to reason about sharing and separation
- Program logic
 - Judgement: $\{P\}C\{Q\}$
- Assertion logic (logic of Bunched Implications, BI)

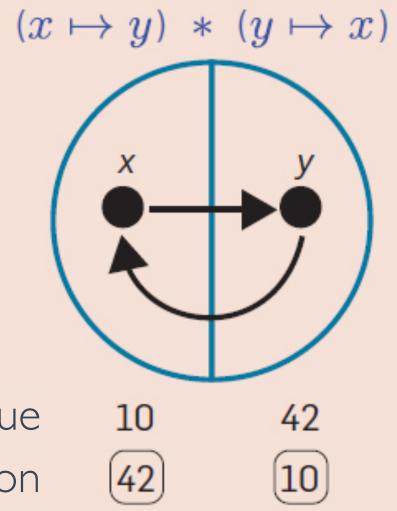
- $P, Q ::= p \in \mathscr{AP} \mid \top \mid \bot \mid P \land Q \mid P \lor Q \mid P \Rightarrow Q \mid P \ast Q \mid P - \ast Q$

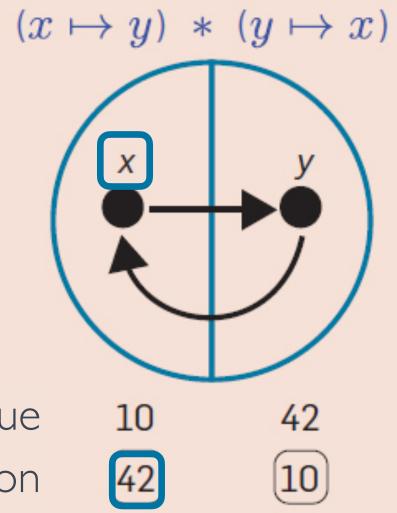
- A flexible framework to reason about sharing and separation
- Program logic
 - Judgement: $\{P\}C\{Q\}$
- Assertion logic (logic of Bunched Implications, BI)

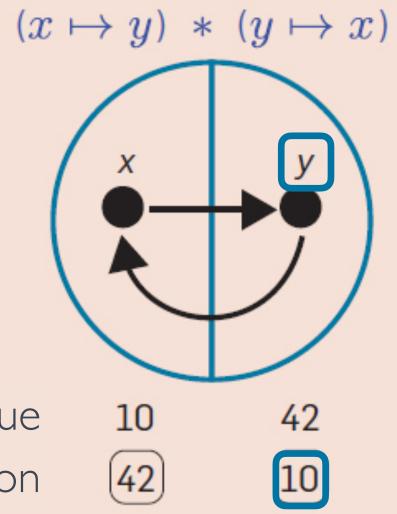
$-P,Q ::= p \in \mathscr{AP} \mid \top \mid \bot \mid P \land Q \mid P \lor Q \mid P \Rightarrow Q \mid P \ast Q \mid P - \ast Q$

- A flexible framework to reason about sharing and separation
- Program logic
 - Judgement: $\{P\}C\{Q\}$
- Assertion logic (logic of Bunched Implications, BI)
- Outline:
 - Intuition of P * Q
 - Semantics of Bl
 - Programs and atomic propositions
 - Proof rules of program logic

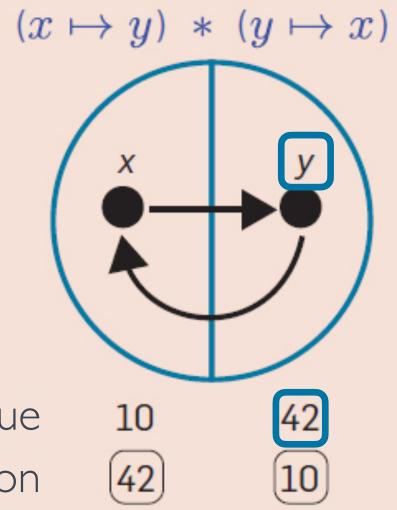
- $P, Q ::= p \in \mathscr{AP} \mid \mathsf{T} \mid \bot \mid P \land Q \mid P \lor Q \mid P \Rightarrow Q \mid P \ast Q \mid P - \ast Q$

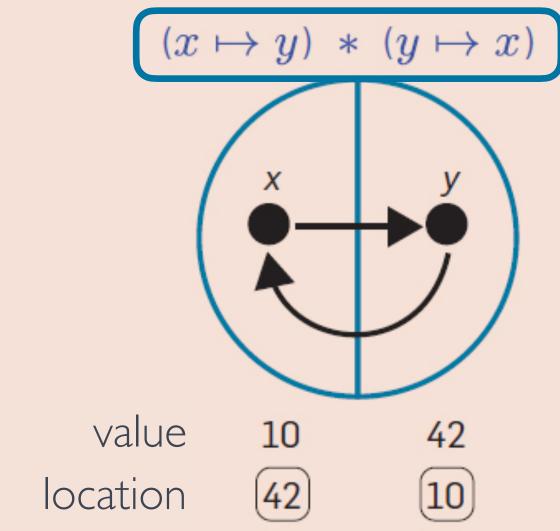


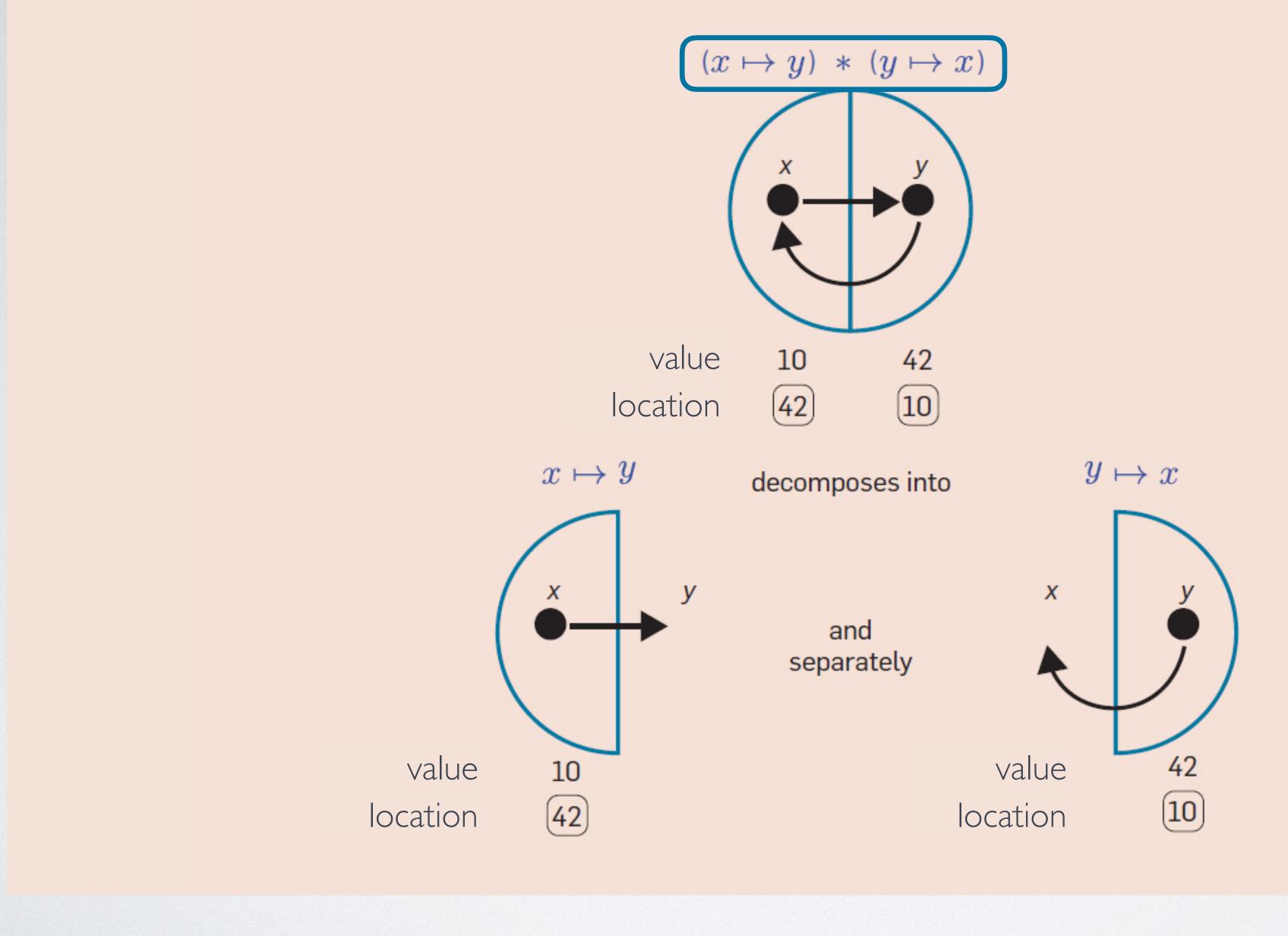


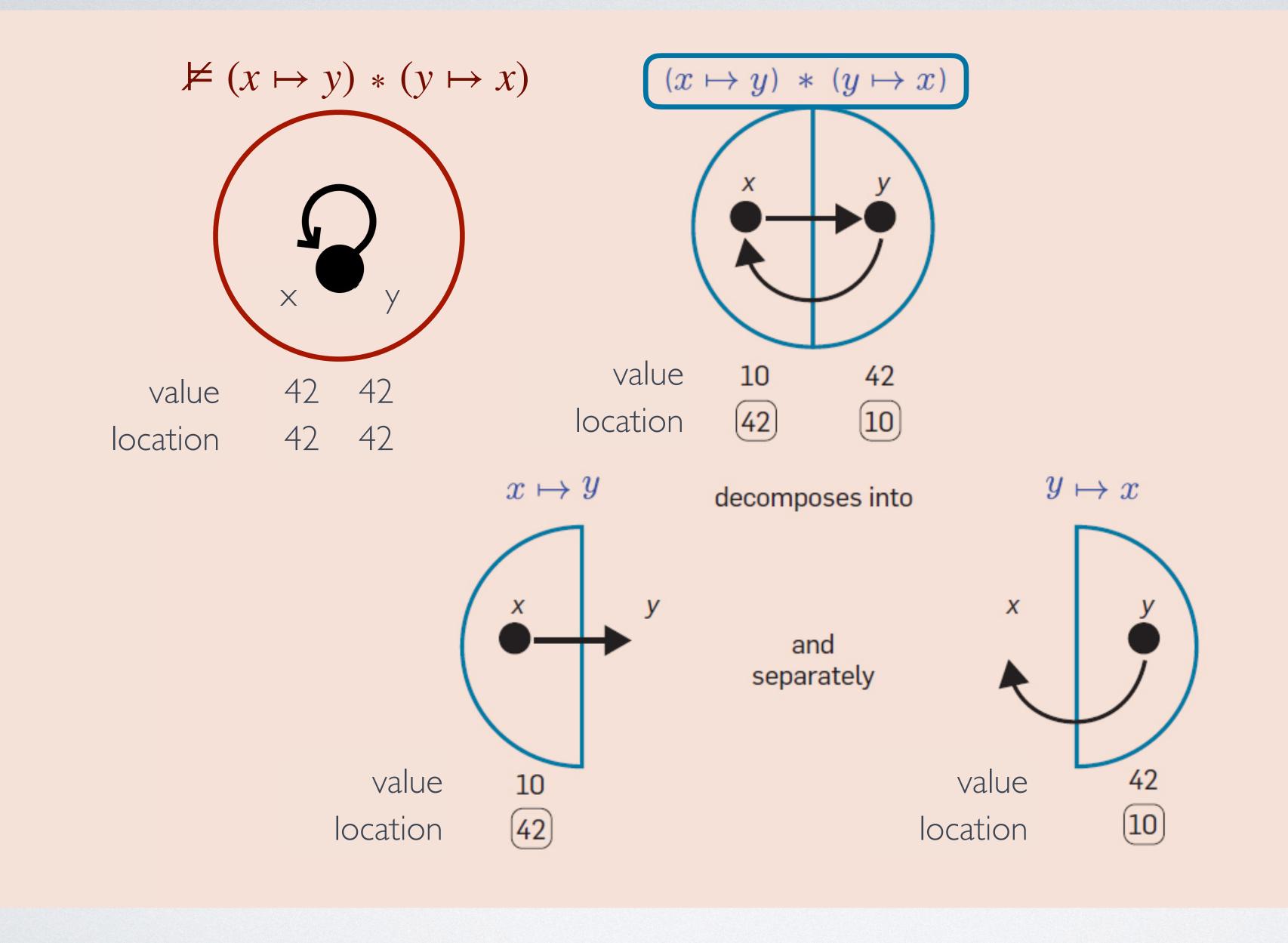


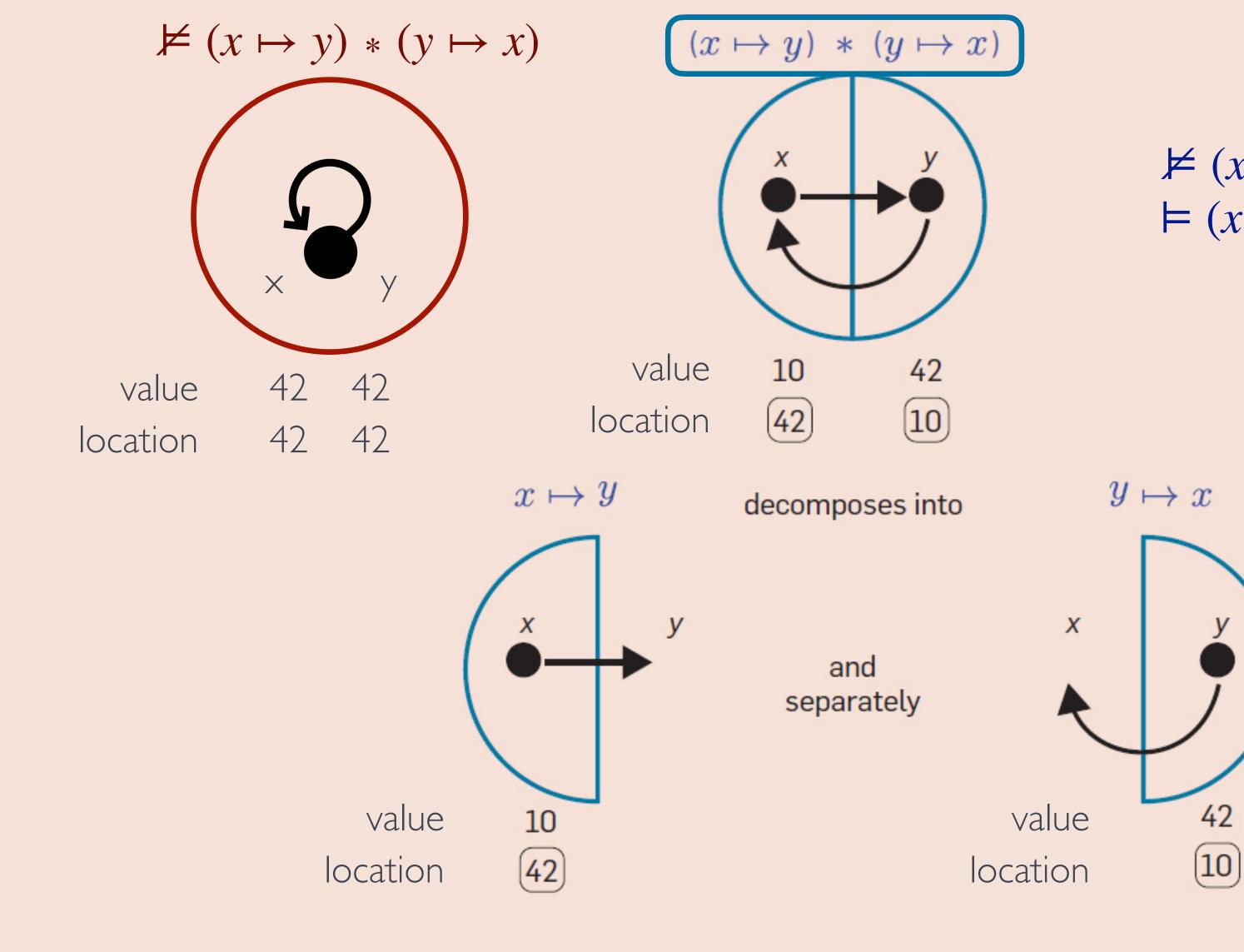












 $\nvDash (x \mapsto y) * (x \mapsto y)$ $\vDash (x \mapsto y) \land (x \mapsto y)$

- A Kripke resource monoid is a set M with
 - a partial binary operation $\circ : M \times M \rightarrow M$ that is
 - associative
 - commutative
 - an identity element $e \in M$
 - a pre-order ⊑ on M

- A Kripke resource monoid is a set M with
 - a partial binary operation

 M × M → M that is
 - associative: $x \circ (y \circ z) = (x \circ y) \circ z$,
 - commutative
 - an identity element $e \in M$
 - a pre-order \sqsubseteq on M

- A Kripke resource monoid is a set M with
 - a partial binary operation $\circ : M \times M \rightarrow M$ that is
 - associative: $x \circ (y \circ z) = (x \circ y) \circ z$,
 - commutative: $y \circ x = x \circ y$,
 - an identity element $e \in M$
 - a pre-order \Box on M

- A Kripke resource monoid is a set M with
 - a partial binary operation $\circ : M \times M \rightarrow M$ that is
 - associative: $x \circ (y \circ z) = (x \circ y) \circ z$,
 - commutative: $y \circ x = x \circ y$,
 - an identity element $e \in M$: $e \circ x = x \circ e = x$,
 - a pre-order \Box on M

- A Kripke resource monoid is a set M with
 - a partial binary operation $\circ : M \times M \rightarrow M$ that is
 - associative: $x \circ (y \circ z) = (x \circ y) \circ z$,
 - commutative: $y \circ x = x \circ y$,
 - an identity element $e \in M$: $e \circ x = x \circ e = x$,
 - a pre-order \sqsubseteq on M:
 - transitive: if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$;
 - reflexive: $x \sqsubseteq x$ for any x

Distribution model

Distribution model

- Let M be the set of distributions over memories,

Distribution model

- Let M be the set of distributions over memories,
 - for distributions $f: X \to [0,1]$ and $g: Y \to [0,1]$, $f \circ g$ defined to be

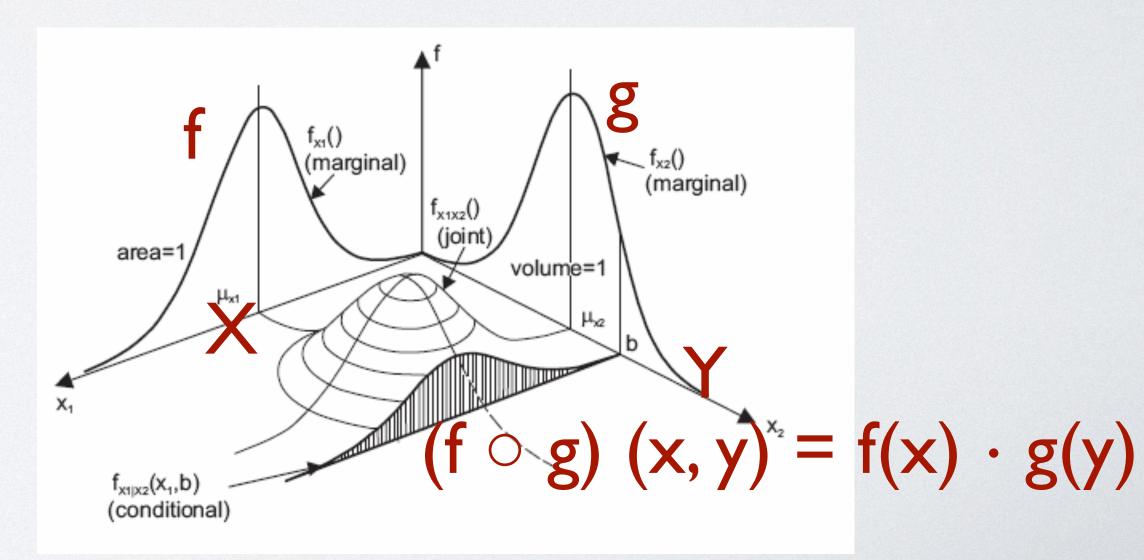
their independent product if X, Y are disjoint, otherwise undefined

Distribution model

- Let M be the set of distributions over memories,

their independent product if X, Y are disjoint, otherwise undefined

- for distributions $f: X \to [0,1]$ and $g: Y \to [0,1]$, $f \circ g$ defined to be

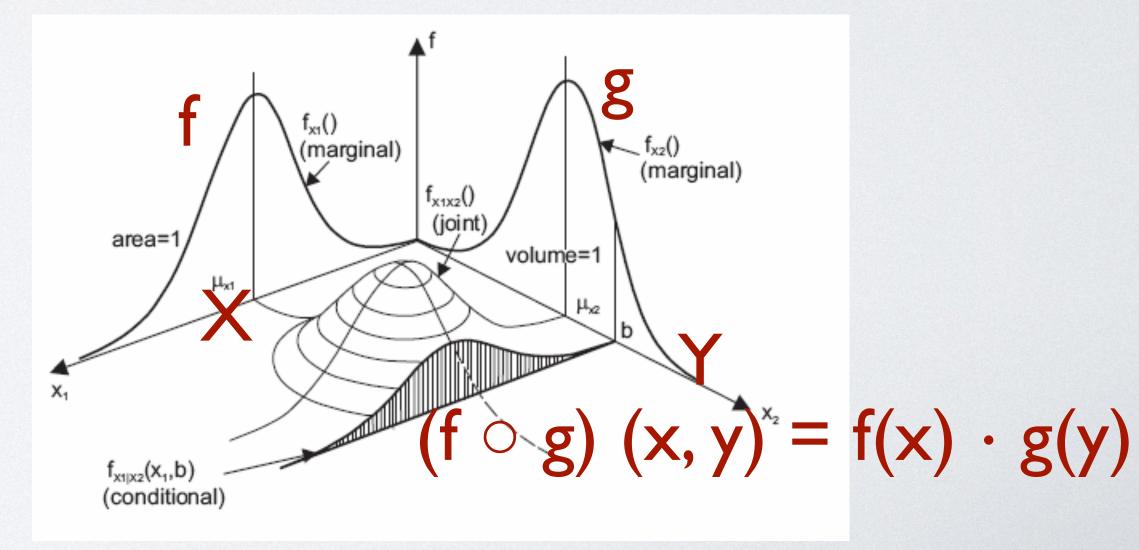


Distribution model

- Let M be the set of distributions over memories,

their independent product if X, Y are disjoint, otherwise undefined

- for distributions $f: X \to [0,1]$ and $g: Y \to [0,1]$, $f \circ g$ defined to be

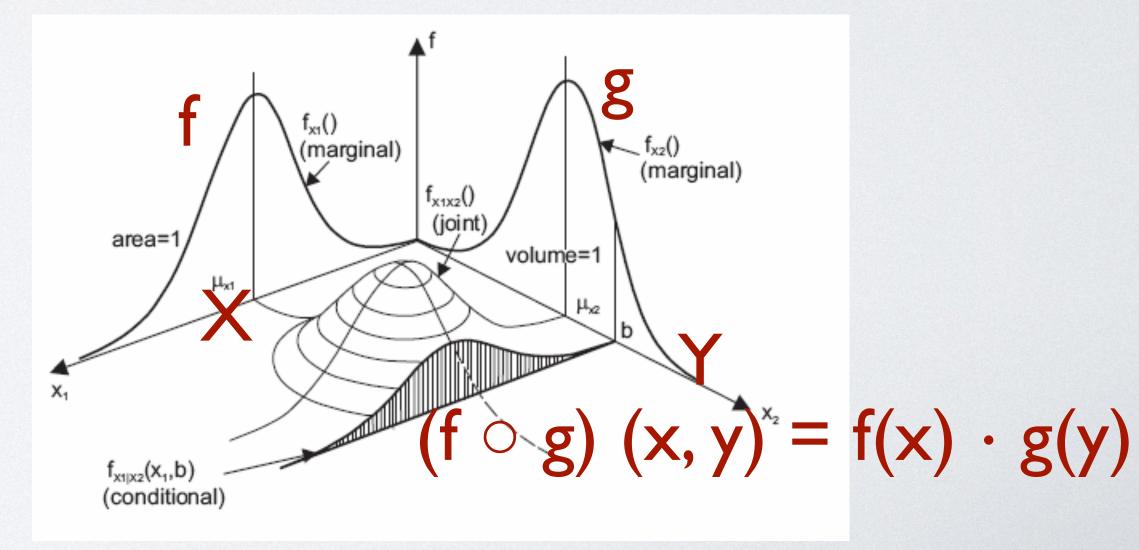


Distribution model

- Let M be the set of distributions over memories,

- for distributions $f: X \to [0,1]$ and $g: Y \to [0,1]$, $f \circ g$ defined to be

their independent product if X, Y are disjoint, otherwise undefined



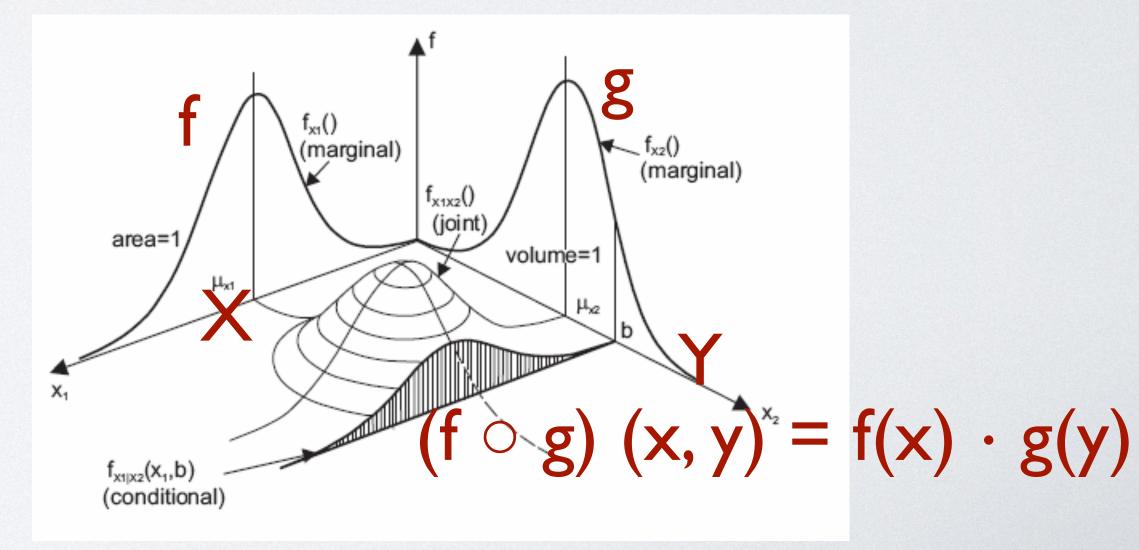
Distribution model

- Let M be the set of distributions over memories,

 - $f \sqsubseteq h$ if h marginalizes into f

- for distributions $f: X \to [0,1]$ and $g: Y \to [0,1]$, $f \circ g$ defined to be

their independent product if X, Y are disjoint, otherwise undefined



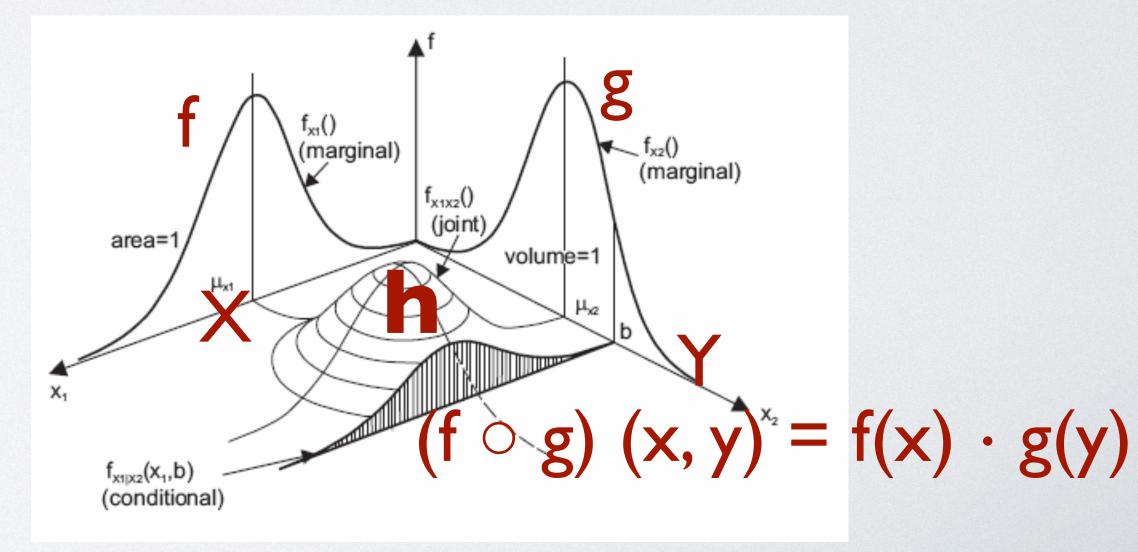
Distribution model

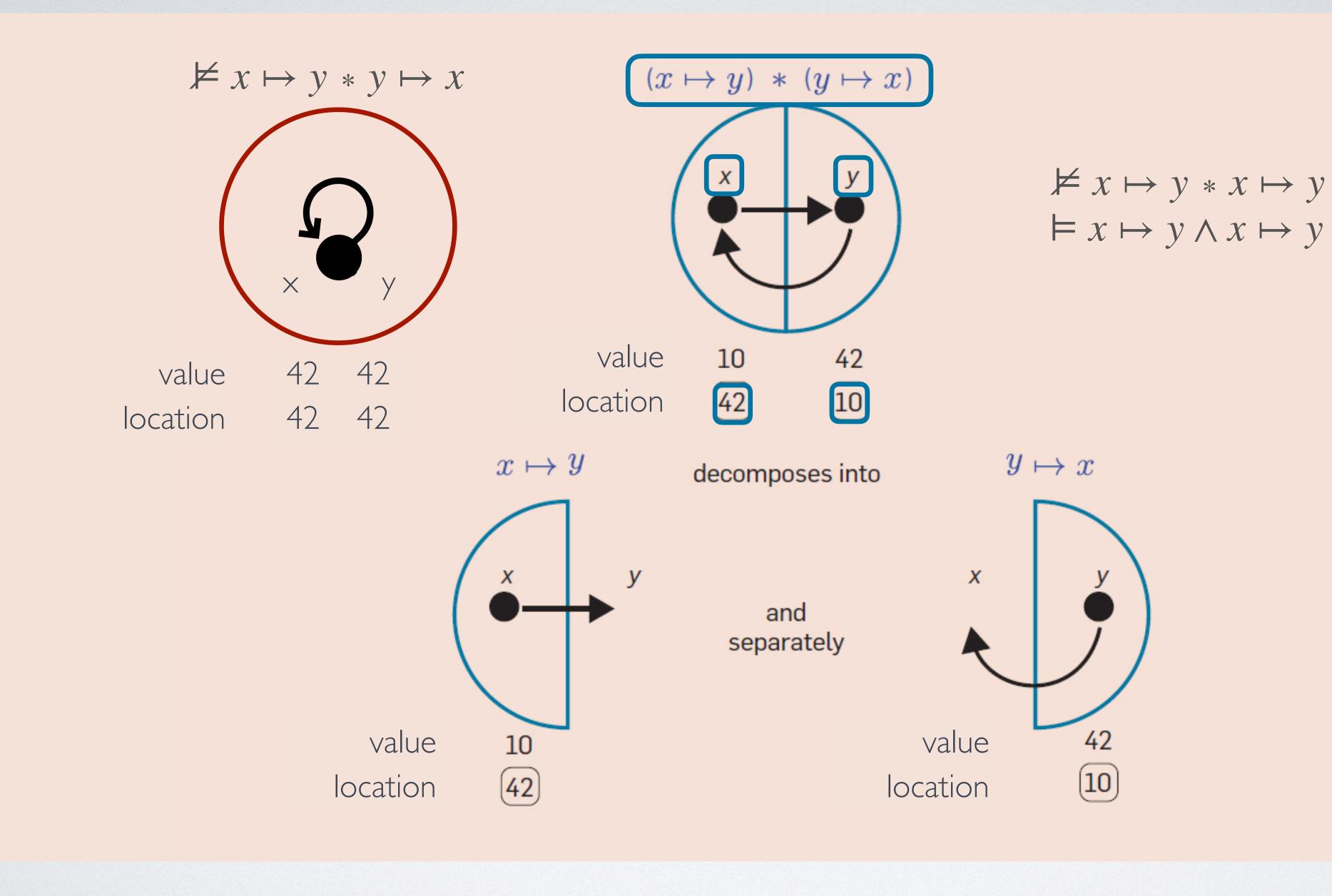
- Let M be the set of distributions over memories,

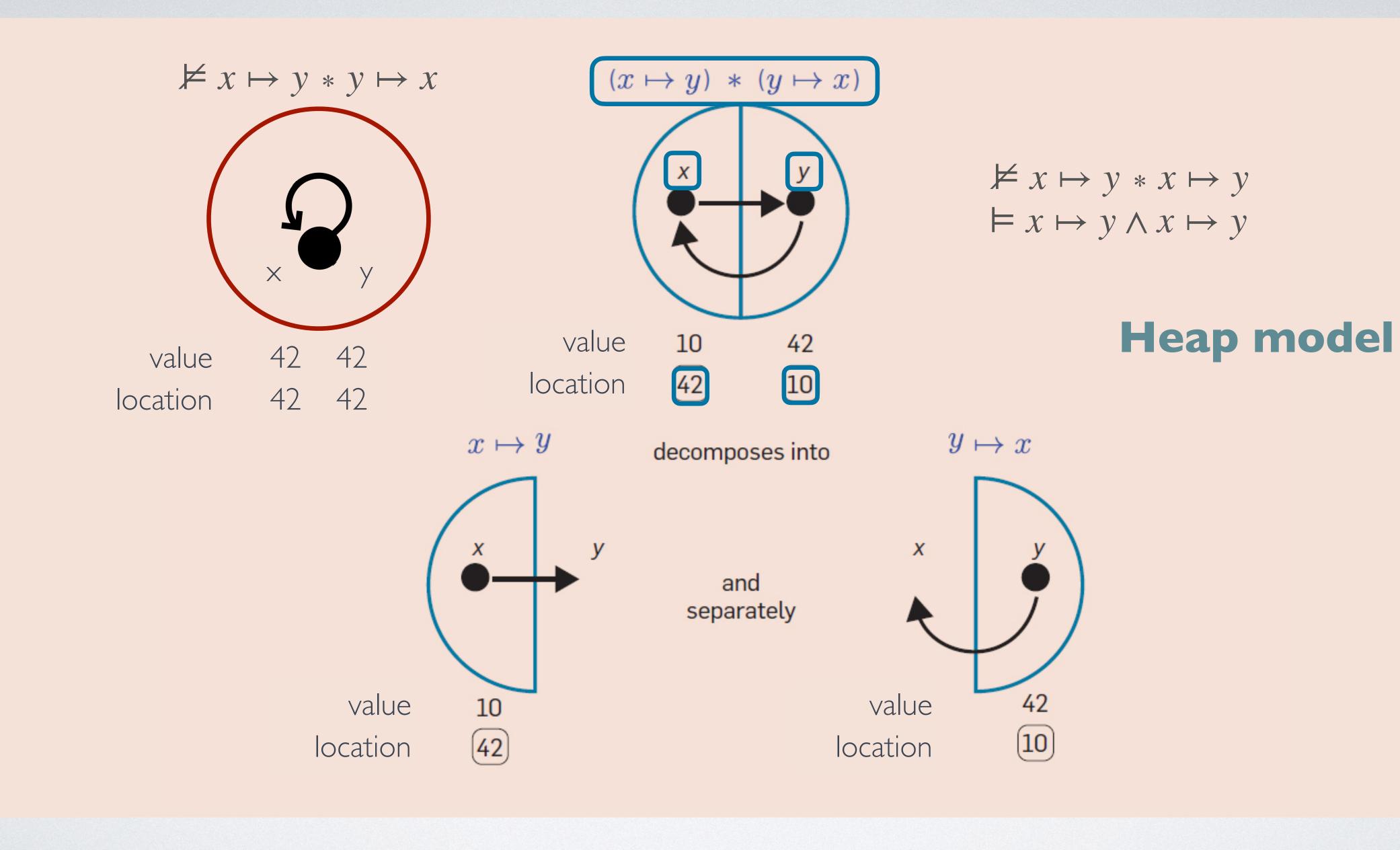
 - $f \sqsubseteq h$ if h marginalizes into f

- for distributions $f: X \to [0,1]$ and $g: Y \to [0,1]$, $f \circ g$ defined to be

their independent product if X, Y are disjoint, otherwise undefined







Pumpkin Spice Latte

Probabilistic Separation Logic

credit to Joe Cutler

- - $m \models p \text{ iff } m \in \mathcal{V}(p)$

- - $m \models p \text{ iff } m \in \mathcal{V}(p)$
 - . . .

- - $m \models p \text{ iff } m \in \mathcal{V}(p)$

...

- $m \models P \land Q$ iff $m \models P$ and $m \models Q$

- - $m \models p \text{ iff } m \in \mathcal{V}(p)$

...

- $m \models P \land Q$ iff $m \models P$ and $m \models Q$

that $m_1 \models P$ and $m_2 \models Q$

- We inductively define the satisfaction relations on $m \in M$ and assertions:

- $m \models P \ast Q$ iff exist m_1, m_2 with $m_1 \circ m_2$ defined and $m_1 \circ m_2 \sqsubseteq m$ such

- We inductively define the satisfaction relations on $m \in M$ and assertions:
 - $m \models p \text{ iff } m \in \mathcal{V}(p)$

...

- $m \models P \land Q$ iff $m \models P$ and $m \models Q$
- $m \models P * Q$ iff exist m_1, m_2 with $m_1 \circ m_2$ defined and $m_1 \circ m_2 \sqsubseteq m$ such

that $m_1 \models P$ and $m_2 \models Q$

P * Q

- We inductively define the satisfaction relations on $m \in M$ and assertions:
 - $m \models p \text{ iff } m \in \mathcal{V}(p)$

...

- $m \models P \land Q$ iff $m \models P$ and $m \models Q$
- $m \models P * Q$ iff exist m_1, m_2 with $m_1 \circ m_2$ defined and $m_1 \circ m_2 \sqsubseteq m$ such

that $m_1 \models P$ and $m_2 \models Q$

PP * Q

- We inductively define the satisfaction relations on $m \in M$ and assertions:
 - $m \models p \text{ iff } m \in \mathcal{V}(p)$

...

- $m \models P \land Q$ iff $m \models P$ and $m \models Q$
- $m \models P * Q$ iff exist m_1, m_2 with $m_1 \circ m_2$ defined and $m_1 \circ m_2 \sqsubseteq m$ such

that $m_1 \models P$ and $m_2 \models Q$

 $P \qquad Q \\ P \qquad Q \\ P \qquad P \qquad Q \\ P \qquad P \qquad Q \\ n \quad 0 \quad m \quad defined and m \quad 0 \quad m \quad \Box \quad m \text{ such}$

- We inductively define the satisfaction relations on $m \in M$ and assertions:
 - $m \models p \text{ iff } m \in \mathcal{V}(p)$

...

- $m \models P \land Q$ iff $m \models P$ and $m \models Q$
- $m \models P * Q$ iff exist m_1, m_2 with $m_1 \circ m_2$ defined and $m_1 \circ m_2 \sqsubseteq m$ such

that $m_1 \models P$ and $m_2 \models Q$

- In the independence model:

 $P \qquad Q \\ P \qquad Q \\ P \qquad P \qquad Q \\ P \qquad P \qquad Q \\ n \quad 0 \quad m \quad defined and m \quad 0 \quad m \quad \Box \quad m \text{ such}$

- We inductively define the satisfaction relations on $m \in M$ and assertions:
 - $m \models p \text{ iff } m \in \mathcal{V}(p)$

...

- $m \models P \land Q$ iff $m \models P$ and $m \models Q$
- $m \models P * Q$ iff exist m_1, m_2 with $m_1 \circ m_2$ defined and $m_1 \circ m_2 \sqsubseteq m$ such

that $m_1 \models P$ and $m_2 \models Q$

In the independence model: -

- $m \models \langle X \rangle * \langle Y \rangle$ iff variables X, Y are independent in m

P Q P * O

- Judgement: $\{P\}C\{Q\}$

- Judgement: $\{P\}C\{Q\}$
- Programs:

- Judgement: $\{P\}C\{Q\}$
- Programs:

- Judgement: $\{P\}C\{Q\}$
- Programs:
- Atomic propositions in the distribution model

- Judgement: $\{P\}C\{Q\}$
- Programs:
- Atomic propositions in the distribution model

-
$$\mu \models \mathbf{U}_T \langle e \rangle$$

- Judgement: $\{P\}C\{Q\}$
- Programs:
- Atomic propositions in the distribution model

-
$$\mu \models \mathbf{U}_T \langle e \rangle$$

- $\mu \models \mathbf{Detm}\langle e \rangle$

- Judgement: $\{P\}C\{Q\}$
- Programs:
- Atomic propositions in the distribution model

-
$$\mu \models \mathbf{U}_T \langle e \rangle$$

- $\mu \models \mathbf{Detm}\langle e \rangle$

-
$$\mu \models e \sim e'$$

- Judgement: $\{P\}C\{Q\}$
- Programs:
- Atomic propositions in the distribution model

-
$$\mu \models \mathbf{U}_T \langle e \rangle$$

- $\mu \models \mathbf{Detm}\langle e \rangle$

-
$$\mu \models e \sim e'$$

- $\mu \models \langle e \rangle$ iff $\mu \models e \sim e$

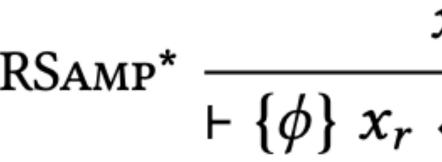
Proof Rules

$$\operatorname{RSAMP}^* \frac{1}{\vdash \{\phi\} x_r}$$

Proof Rules

 $x_r \notin \mathrm{FV}(\phi)$ $\Leftarrow \mathbf{U}_S \left\{ \phi * \mathbf{U}_S \langle x_r \rangle \right\}$

Proof Rules



$\vdash \{\phi\} c\{\psi\}$ c does not modifies $FV(\eta)$ side conditions FRAME $\vdash \{\phi * \eta\} C\{\psi * \eta\}$

 $\operatorname{RSAMP}^* \frac{x_r \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_r \notin \operatorname{U}_S \{\phi * \operatorname{U}_S(x_r)\}}$

A SEPARATION LOGIC FOR NEGATIVE DEPENDENCE

on assertion logic

Independence \rightarrow Negative Association

on assertion logic

Independence \rightarrow Negative Association

$\langle X_1 \rangle * \langle X_2 \rangle * \dots * \langle X_n \rangle$ asserts X_1, \dots, X_n independent in distribution model

on assertion logic

asserts X_1, \ldots, X_n NA?

Independence \rightarrow Negative Association

 $\langle X_1 \rangle * \langle X_2 \rangle * \ldots * \langle X_n \rangle$ asserts X_1, \ldots, X_n independent in distribution model Can we add another conjunction \circledast such that $\langle X_1 \rangle \circledast \langle X_2 \rangle \circledast \dots \circledast \langle X_n \rangle$

Challenge in the simplest case

Challenge in the simplest case

Say we want $\langle X_1 \rangle \circledast \langle X_2 \rangle$ asserts X_1, X_2 NA in distribution model

Challenge in the simplest case Say we want $\langle X_1 \rangle \otimes \langle X_2 \rangle$ asserts X_1, X_2 NA in distribution model Define some \oplus : M × M → M, and let $\mu \models \langle X_1 \rangle \otimes \langle X_2 \rangle$ iff exist μ_1, μ_2 with $\mu_1 \oplus \mu_2$ defined and $\mu_1 \oplus \mu_2 \sqsubseteq \mu$ such that $\mu_1 \models \langle X_1 \rangle$ and $\mu_2 \models \langle X_2 \rangle$

Challenge in the simplest case Say we want $\langle X_1 \rangle \otimes \langle X_2 \rangle$ asserts X_1, X_2 NA in distribution model **Define some** \oplus : M × M → M, and X_1, X_2 NA in μ iff exist μ_1, μ_2 with $\mu_1 \oplus \mu_2$ defined and $\mu_1 \oplus \mu_2 \sqsubseteq \mu$ such that $\mu_1 \models \langle X_1 \rangle$ and $\mu_2 \models \langle X_2 \rangle$

$$\mu_1(X_1 = 1) = \mu_2(X_2 = 1) = \frac{1}{3}$$

Challenge in the simplest case

- **Define some** \oplus : M × M → M, and X_1, X_2 NA in μ iff exist μ_1, μ_2 with

$$\mu_1(X_1 = 1) = \mu_2(X_2 = 1) = \frac{1}{3}$$

 $\mu_1(X_1 = 0) = \mu_2(X_2 = 0) = \frac{2}{2}$

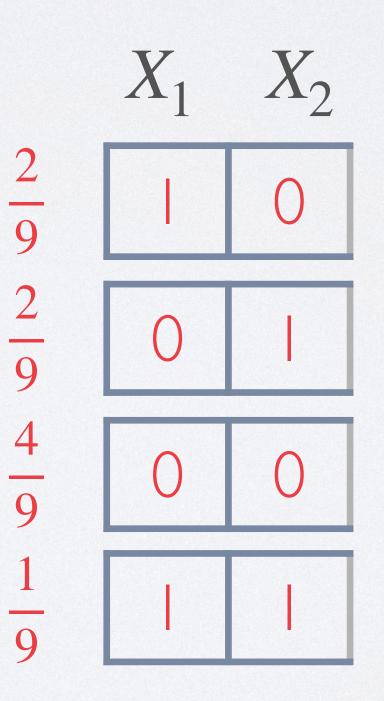
Challenge in the simplest case

- **Define some** \oplus : M × M → M, and X_1, X_2 NA in μ iff exist μ_1, μ_2 with

Challenge in the simplest case Say we want $\langle X_1 \rangle \otimes \langle X_2 \rangle$ asserts X_1, X_2 NA in distribution model **Define some** \oplus : M × M → M, and X_1, X_2 NA in μ iff exist μ_1, μ_2 with $\mu_1 \oplus \mu_2$ defined and $\mu_1 \oplus \mu_2 \sqsubseteq \mu$ such that $\mu_1 \models \langle X_1 \rangle$ and $\mu_2 \models \langle X_2 \rangle$

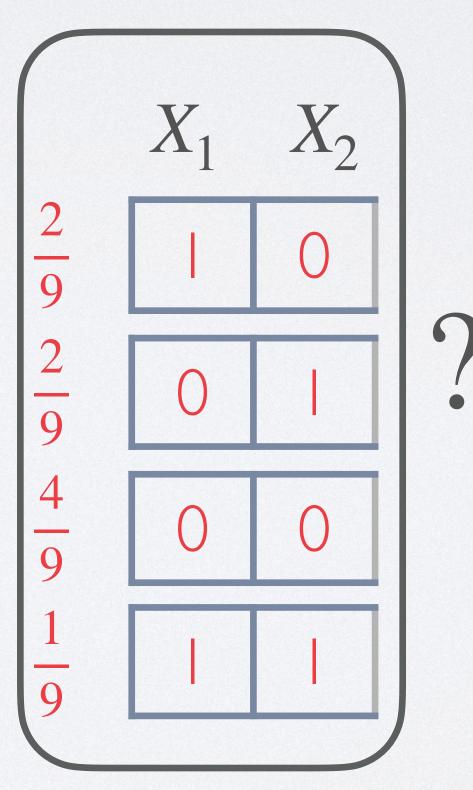
$$\mu_1(X_1 = 1) = \mu_2(X_2 = 1) = \frac{1}{3}$$

 $\mu_1(X_1 = 0) = \mu_2(X_2 = 0)$



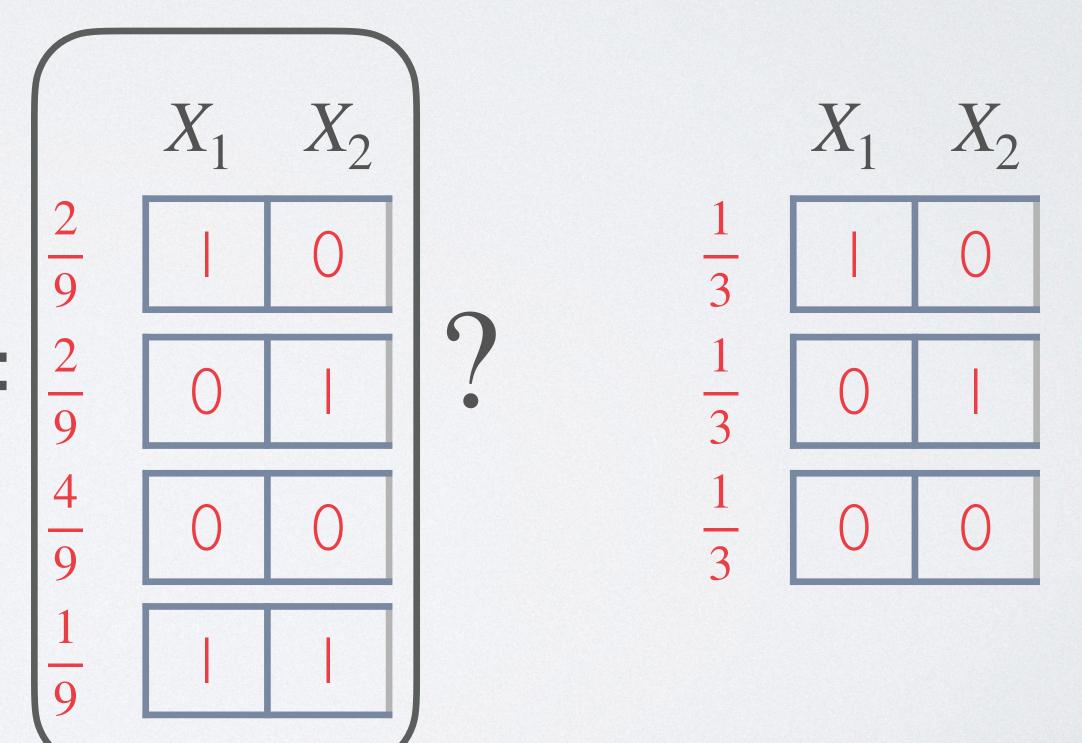
$$\mu_1(X_1 = 1) = \mu_2(X_2 = 1) = \frac{1}{3}$$
$$\mu_1 \bigoplus \mu_2 = \mu_2(X_2 = 0) = \frac{2}{3}$$

Challenge in the simplest case **Define some** \oplus : M × M → M, and X_1, X_2 NA in μ iff exist μ_1, μ_2 with



$$\mu_1(X_1 = 1) = \mu_2(X_2 = 1) = \frac{1}{3}$$
$$\mu_1 \bigoplus \mu_2 = \mu_2(X_2 = 0) = \frac{2}{3}$$

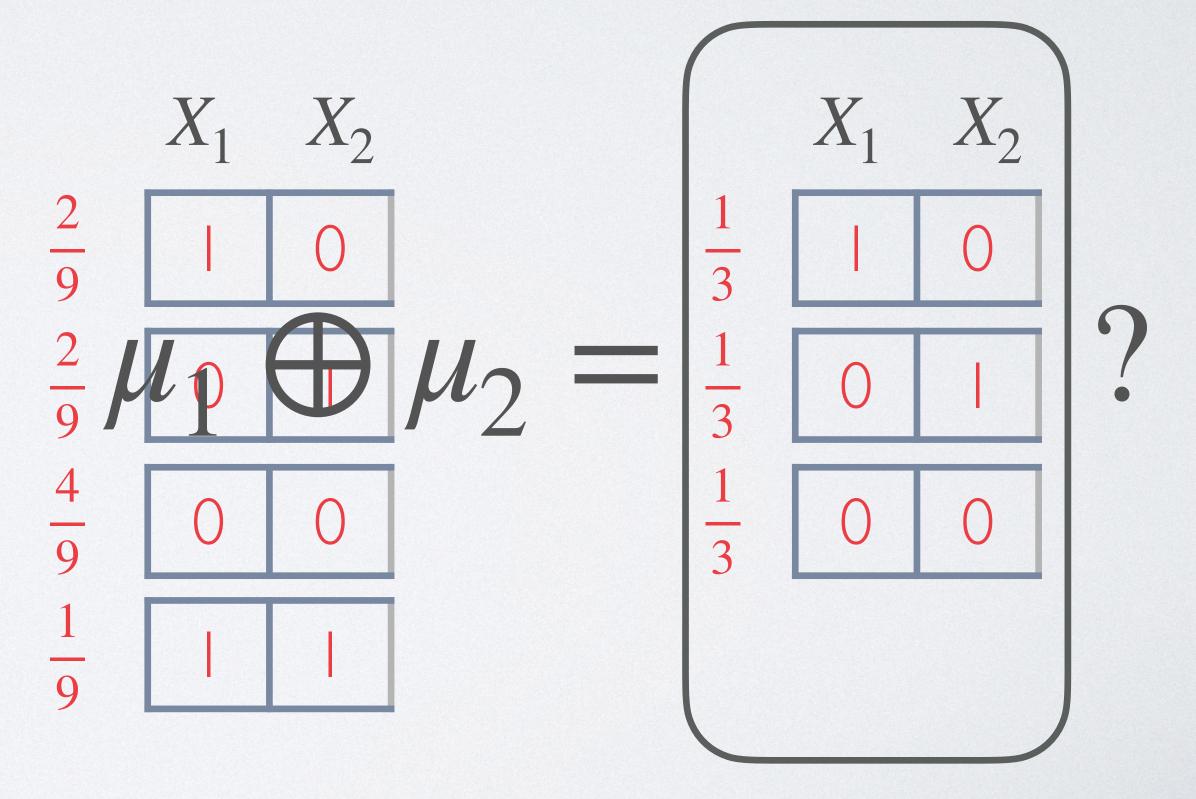
Challenge in the simplest case **Define some** \oplus : M × M → M, and X_1, X_2 NA in μ iff exist μ_1, μ_2 with



$$\mu_1(X_1 = 1) = \mu_2(X_2 = 1) = \frac{1}{3}$$

 $\mu_1(X_1 = 0) = \mu_2(X_2)$ ____

Challenge in the simplest case **Define some** \oplus : M × M → M, and X_1, X_2 NA in μ iff exist μ_1, μ_2 with



- A Kripke resource monoid is a set M with
 - a partial binary operation $\circ : M \times M \rightarrow M$ that is
 - associative
 - commutative
 - an identity element $e \in M$
 - a pre-order ⊑ on M

- A Kripke resource monoid is a set M with
 - a binary operation $\circ: M \times M \to \mathscr{P}(M)$ that is
 - associative
 - commutative
 - an identity element $e \in M$
 - a pre-order ⊑ on M

- ABI frame [Docherty 2019] is a set M with
 - a binary operation $\circ: M \times M \to \mathscr{P}(M)$ that is
 - associative
 - commutative
 - an identity element $e \in M$
 - a pre-order ⊑ on M

- A BI frame [Docherty 2019] is a set M with
 - a binary operation $\circ: M \times M \to \mathscr{P}(M)$ that is
 - associative
 - commutative
 - an identity element $E \subseteq M$ compatible with \circ and \sqsubseteq
 - a pre-order ⊑ on M

Solution for the Challenge

- A BI frame [Docherty 2019] is a set M with
 - a binary operation $\circ: M \times M \to \mathscr{P}(M)$ that is
 - associative
 - commutative
 - an identity element $E \subseteq M$ compatible with \circ and \sqsubseteq
 - a pre-order ⊑ on M

$\mu_1 \oplus \mu_2 = \{\mu \mid \text{variables in } \mu_1, \mu_2 \text{ satisfy some sort of NA in } \mu\}$

Skipping other challenges, we have

 $\langle X_1 \rangle \circledast \langle X_2 \rangle \circledast \dots \circledast \langle X_n \rangle$ asserts X_1, X_2, \dots, X_n NA

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I
- Uniformly random permutations
- **Closure of Negative Association:**
- Subsets of NA variables are NA
- Union of independent NA sets is also NA
- Monotonically increasing map preserves NA

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I
- Uniformly random permutations

All valid axioms!

- **Closure of Negative Association:**
- Subsets of NA variables are NA
- Union of independent NA sets is also NA
- Monotonically increasing map preserves NA

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I
- Uniformly random permutations

All valid axioms!

- **Closure of Negative Association:**
- Subsets of NA variables are NA
- Union of independent NA sets is also NA
- Monotonically increasing map preserves NA

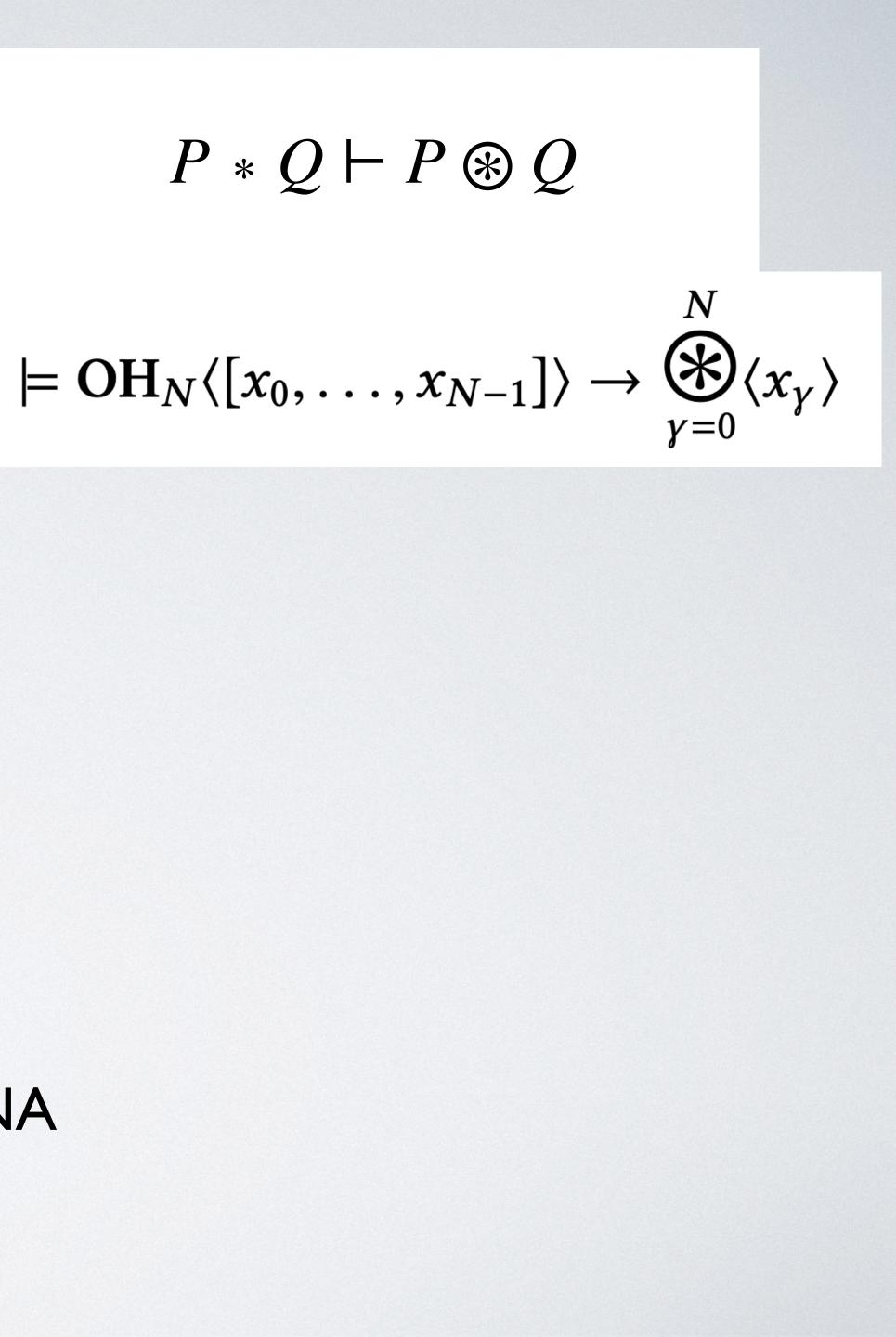
$P * Q \vdash P \circledast Q$

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I
- Uniformly random permutations

All valid axioms!

- Closure of Negative Association:
- Subsets of NA variables are NA
- Union of independent NA sets is also NA
- Monotonically increasing map preserves NA

 $P * Q \vdash P \circledast Q$



- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to I
- Uniformly random permutations

All valid axioms!

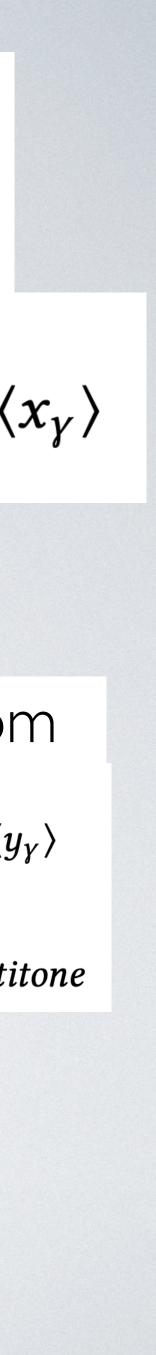
- **Closure of Negative Association**
- Subsets of NA variables are NA when f_1, \ldots, f_N all monotone or all antitone
- Union of independent NA sets is also NA
- Monotonically increasing map preserves NA

$P * Q \vdash P \circledast Q$

 $\models \operatorname{OH}_N \langle [x_0, \ldots, x_{N-1}] \rangle \to \bigotimes_{\gamma=0}^{\infty} \langle x_\gamma \rangle$

Mono-map Axiom

on:
$$\models \bigotimes_{\gamma=0}^{N} \left(\bigwedge_{\alpha=0}^{K_{\gamma}+1} \langle x_{\gamma,\alpha} \rangle \right) \land \bigwedge_{\gamma=0}^{N} y_{\gamma} = f_{\gamma} \left(x_{\gamma,0}, \dots, x_{\gamma,K_{\gamma}} \right) \to \bigotimes_{\gamma=0}^{N} \langle y_{\gamma,\alpha} \rangle$$



Independence \rightarrow Negative Association

Independence → on program logic A RSamp rule for NA?

Independence \rightarrow Negative Association

Independence \rightarrow on program logic A RSamp rule for NA?

Independence \rightarrow Negative Association

 $\operatorname{RSAMP}^* \frac{x_r \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_r \notin \operatorname{U}_S \{\phi * \operatorname{U}_S \langle x_r \rangle\}}$

Independence \rightarrow Negative Association on program logic $\operatorname{RSAMP}^* \frac{x_r \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_r \notin \operatorname{U}_S \{\phi * \operatorname{U}_S(x_r)\}}$ **A RSamp rule for NA?**

A frame rule for NA?

Independence \rightarrow Negative Association on program logic $\operatorname{RSAMP}^* \frac{x_r \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_r \notin \operatorname{U}_S \{\phi * \operatorname{U}_S \langle x_r \rangle\}}$ **A RSamp rule for NA?** A frame rule for NA?

c does not modifies $FV(\eta)$ side conditions $\vdash \{\phi\}c\{\psi\}$

 $\vdash \{\phi * \eta\} C\{\psi * \eta\}$

Independence \rightarrow Negative Association on program logic $\operatorname{RSAMP}^* \frac{x_r \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_r \notin \operatorname{U}_S \{\phi * \operatorname{U}_S \langle x_r \rangle\}}$ **A RSamp rule for NA?** A frame rule for NA?

c does not modifies $FV(\eta)$ side conditions $\vdash \{\phi\}c\{\psi\}$

 $\vdash \{\phi \otimes \eta\} c\{\psi \otimes \eta\}$

Independence \rightarrow Negative Association on program logic $\operatorname{RSAMP}^* \frac{x_r \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_r \notin \operatorname{U}_S \{\phi * \operatorname{U}_S(x_r)\}}$ **A RSamp rule for NA?** A frame rule for NA? c is a monotonically increasing map from $dom(\phi)$ to $dom(\psi)$ c does not modifies $FV(\eta)$ $\vdash \{\phi\}c\{\psi\}$

side conditions

 $\vdash \{\phi \otimes \eta\} c\{\psi \otimes \eta\}$

Independence \rightarrow Negative Association on program logic $\operatorname{RSAMP}^* \frac{x_r \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_r \notin \operatorname{U}_S \{\phi * \operatorname{U}_S(x_r)\}}$ **A RSamp rule for NA?** NA preserved under monotone maps A frame rule for NA? c is a monotonically increasing map from $dom(\phi)$ to $dom(\psi)$ c does not modifies $FV(\eta)$ $\vdash \{\phi\}c\{\psi\}$ side conditions

 $\vdash \{\phi \otimes \eta\} c\{\psi \otimes \eta\}$

A frame rule for NA

c does not modifies $FV(\eta)$ side conditions $\vdash \{\phi\}c\{\psi\}$

Independence \rightarrow Negative Association

 $\vdash \{\phi \circledast \eta\} c\{\psi \circledast \eta\}$

A frame rule for NA $\langle y \rangle$ obtained from a monotonically increasing map on $dom(\phi)$ c does not modifies $FV(\eta)$ $\vdash \{\phi\} c\{\langle y \rangle\}$ side conditions

Independence \rightarrow Negative Association

 $\vdash \{\phi \circledast \eta\} c\{\langle y \rangle \circledast \eta\}$

A frame rule for NA $\langle y \rangle$ obtained from a monotonically increasing map on $dom(\phi)$ c does not modifies $FV(\eta)$ $\vdash \{\phi\} c\{\langle y \rangle\}$ side conditions NA-FRAME

Independence \rightarrow Negative Association

 $\vdash \{\phi \circledast \eta\} c\{\langle y \rangle \circledast \eta\}$

APPLICATIONS

to the motivating example

tasks = [A, ..., Z]loads = [0, 0, 0]

for task in tasks: new_load = one-hot(3) loads = loads + new_load

overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

tasks = [A, ..., Z] loads = [0, 0, 0] i = 0

while i < |tasks|: i = i + 1 new_load = one-hot(3) loads = loads + new_load

overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

tasks = [A, ..., Z]loads = [0, 0, 0]i = 0 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \}$ while i < |tasks|: i = i + 1 $new_load = one-hot(3)$ loads = loads + new_load $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \}$ overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

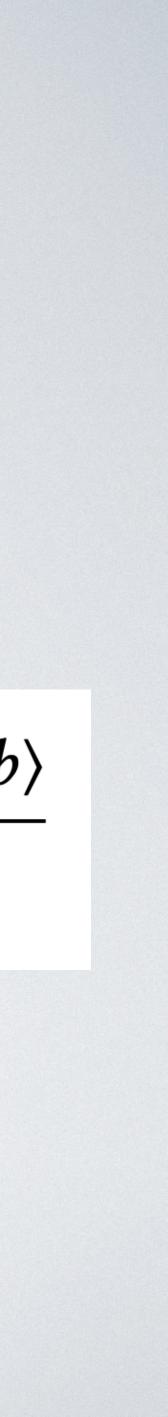
In our informal proof

tasks = [A, ..., Z] loads = [0, 0, 0] i = 0

while i < |tasks|: i = i + 1 new_load = one-hot(3) loads = loads + new_load

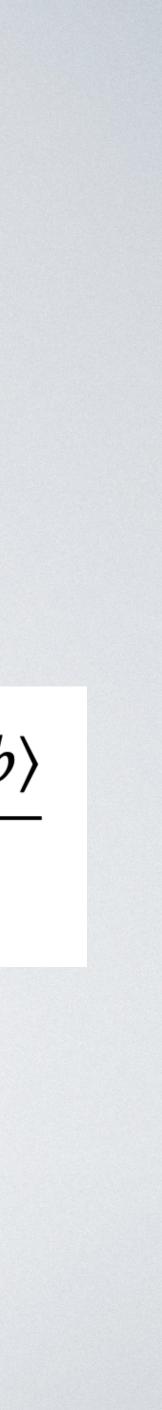
overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

LOOP $\frac{\vdash \{\phi \land b \sim tt\} c \{\phi\}}{\vdash \{\phi\} \text{ while } b \text{ do } c \{\phi \land b \sim ff\}}$



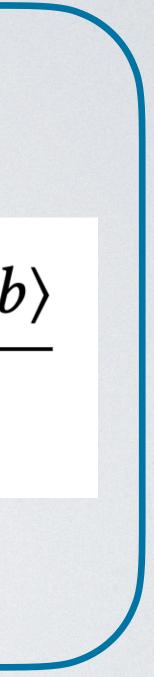
tasks = [A, ..., Z] loads = [0, 0, 0]i = 0 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ while i < |tasks|: i = i + 1 $new_load = one-hot(3)$ loads = loads + new_load $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$ overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

LOOP $\frac{\vdash \{\phi \land b \sim tt\} c \{\phi\}}{\vdash \{\phi\} \text{ while } b \text{ do } c \{\phi \land b \sim ff\}}$



tasks = [A, ..., Z]loads = [0, 0, 0]i = 0 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ while i < |tasks|: i = i + 1 $new_load = one-hot(3)$ loads = loads + new_load $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$ overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

$$\begin{array}{l} \text{.OOP} & \vdash \{\phi \land b \sim tt\} \ c \ \{\phi\} & \models \phi \to \text{Detm}\langle b \\ & \vdash \{\phi\} \text{ while } b \text{ do } c \ \{\phi \land b \sim ff\} \end{array} \end{array}$$



i = i + 1

$new_load = one-hot(3)$

loads = loads + new_load

 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$

LOOP $\frac{\vdash \{\phi \land b \sim tt\} c \{\phi\}}{\vdash \{\phi\} \text{ while } b \text{ do } c \{\phi \land b \sim ff\}}$

> $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task|) \}$ i = i + 1

$new_load = one-hot(3)$

loads = loads + new_load

 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$

 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$

LOOP $\frac{\vdash \{\phi \land b \sim tt\} c \{\phi\}}{\vdash \{\phi\} \text{ while } b \text{ do } c \{\phi \land b \sim ff\}}$

> $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task|) \}$ i = i + 1

$new_load = one-hot(3)$

loads = loads + new_load

 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$

 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$

DAssn $\vdash \{\psi[e_d/x_d]\} x_d \leftarrow e_d \{\psi\}$



> $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task|) \}$ i = i + 1

 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < | task | + 1) \}$ $new_load = one-hot(3)$

loads = loads + new_load

 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$

 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$

DAssn $\vdash \{\psi[e_d/x_d]\} x_d \leftarrow e_d \{\psi\}$



 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ while i < |tasks|: $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task|) \}$ i = i + 1 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$ $new_load = one-hot(3)$ DAssn loads = loads + new_load $\bigotimes_{i \in \{0,1,2\}} |oads[i] \land Detm[i] \land Detm[task]\}$ $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$

$\vdash \{\psi[e_d/x_d]\} x_d \leftarrow e_d \{\psi\}$

$\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$

new_load = one-hot(3)

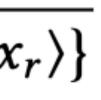
loads = loads + new_load

$\{ \circledast_{i \in \{0,1,2\}} | \text{oads}[i] \land \text{Detm}[i] \land \text{Detm}[\text{task}] \land (i < |\text{task}| + 1) \}$

$new_load = one-hot(3)$

loads = loads + new_load

$$\operatorname{RSAMP}^{*} \frac{x_{r} \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_{r} \notin \operatorname{U}_{S} \{\phi * \operatorname{U}_{S}(x)\}}$$



$\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$

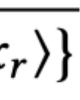
$new_load = one-hot(3)$

 $\{(\circledast_{i\in\{0,1,2\}} | oads[i] * OH_3[new_loads]) \land \dots\}$

loads = loads + new_load

 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$

 $\operatorname{RSAMP}^{*} \frac{x_r \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_r \notin \operatorname{U}_S \{\phi * \operatorname{U}_S(x_r)\}}$

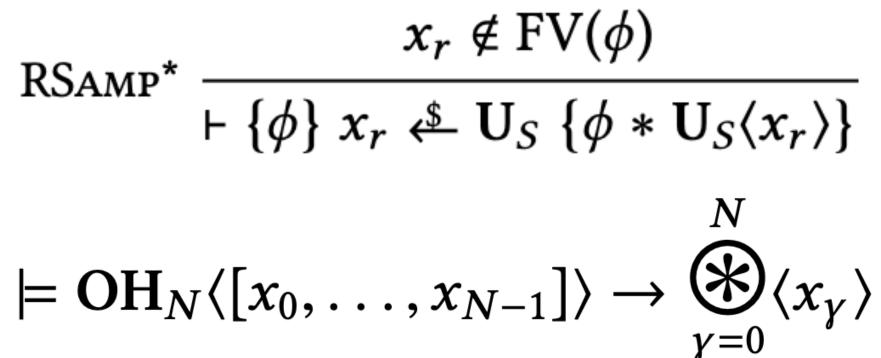


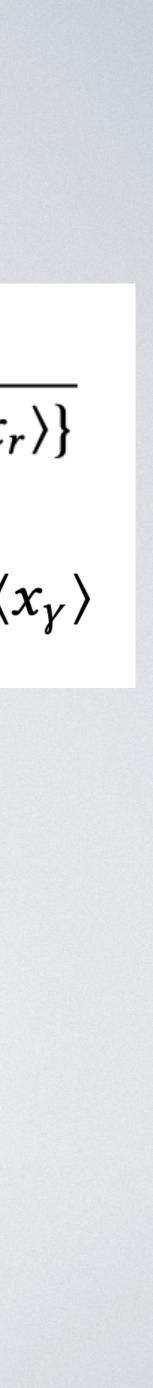
$\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < | task | + 1) \}$

$new_load = one-hot(3)$

 $\{(\circledast_{i \in \{0,1,2\}} | oads[i] * OH_3[new_loads]) \land \dots\}$

loads = loads + new_load





 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$ $new_load = one-hot(3)$ {($\circledast_{i \in \{0,1,2\}}$ loads[i] * **OH**₃[new_loads]) $\land \dots$ } $\{(\circledast_{i \in \{0,1,2\}} | \mathsf{oads}[i] \ast \circledast_{i \in \{0,1,2\}} \mathsf{new}_{\mathsf{load}}[i]) \land \dots\}$

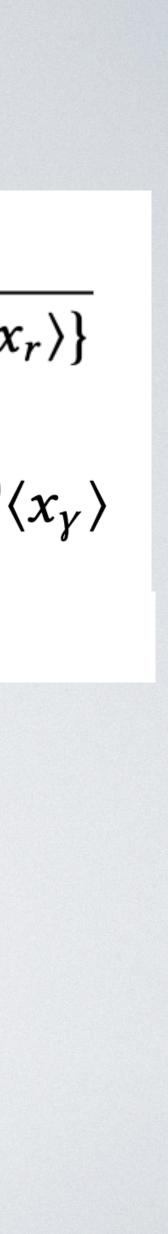
loads = loads + new_load

$$\operatorname{RSAMP}^{*} \frac{x_{r} \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_{r} \notin \operatorname{U}_{S} \{\phi * \operatorname{U}_{S} \langle x \rangle\}}$$
$$\models \operatorname{OH}_{N} \langle [x_{0}, \dots, x_{N-1}] \rangle \to \bigotimes_{\nu=0}^{N} \langle x_{0} \rangle$$

 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$ $new_load = one-hot(3)$ {($\circledast_{i \in \{0,1,2\}}$ loads[i] * **OH**₃[new_loads]) $\land \dots$ } $\{(\circledast_{i \in \{0,1,2\}} | \mathsf{oads}[i] * \circledast_{i \in \{0,1,2\}} \mathsf{new}_{\mathsf{load}}[i]) \land \dots\}$

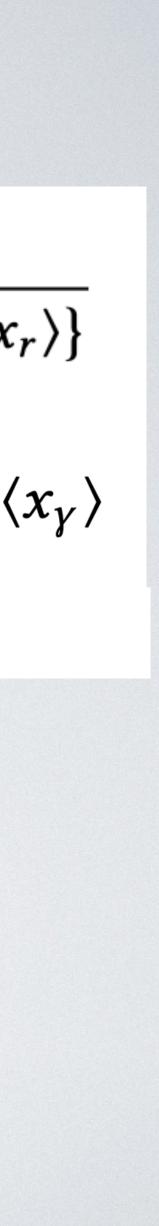
loads = loads + new_load

$$\operatorname{RSAMP}^{*} \frac{x_{r} \notin \operatorname{FV}(\phi)}{\vdash \{\phi\} x_{r} \ll \operatorname{U}_{S} \{\phi * \operatorname{U}_{S} \langle x \rangle\}}$$
$$\models \operatorname{OH}_{N} \langle [x_{0}, \dots, x_{N-1}] \rangle \rightarrow \bigotimes_{\gamma=0}^{N} \langle \varphi \rangle$$
$$P * Q \vdash P \circledast Q$$



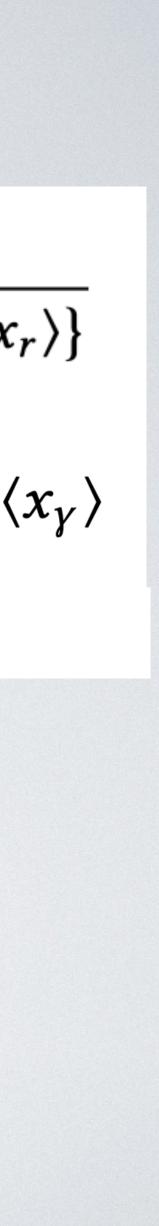
 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$ $new_load = one-hot(3)$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i] * OH_3[new_loads]\}$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i] * \bigotimes_{i \in \{0,1,2\}} new_{low_{i \in \{0,1,2\}}} \}$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i]) \otimes (\bigotimes_{i \in \{0,1,2\}} new]$ loads = loads + new_load

 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$



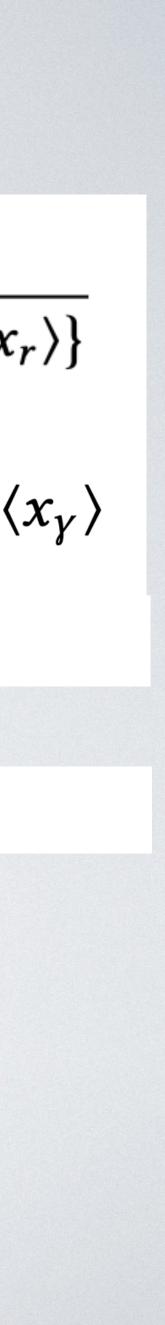
 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$ $new_load = one-hot(3)$ {($\circledast_{i \in \{0,1,2\}}$ loads[i] * OH₃[new_loads] $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i] * \bigotimes_{i \in \{0,1,2\}} new_{low_{i \in \{0,1,2\}}} \}$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i]) \otimes (\bigotimes_{i \in \{0,1,2\}} new]$ updates = loads + new_loads

loads = updates $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$

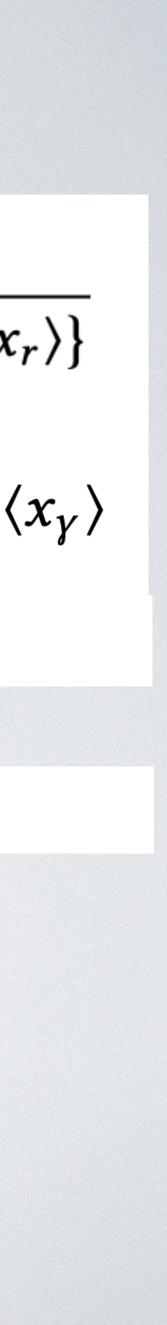


 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < | task | + 1) \}$ $new_load = one-hot(3)$ {($\circledast_{i \in \{0,1,2\}}$ loads[i] * OH₃[new_loads] $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i] * \bigotimes_{i \in \{0,1,2\}} new_{low_{i \in \{0,1,2\}}} \}$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i]) \otimes (\bigotimes_{i \in \{0,1,2\}} new]$ updates = loads + new_loads

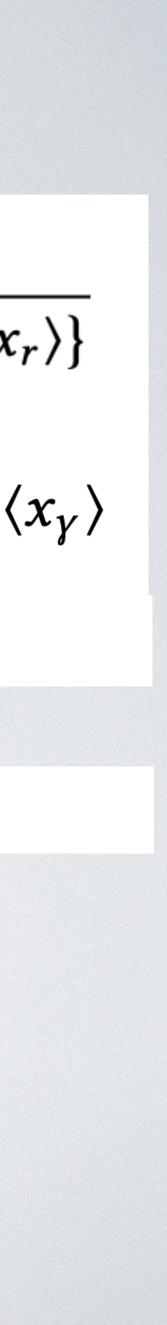
loads = updates $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$



 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < | task | + 1) \}$ $new_load = one-hot(3)$ {($\circledast_{i \in \{0,1,2\}}$ loads[i] * OH₃[new_loads] $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i] * \bigotimes_{i \in \{0,1,2\}} new_{low_{i \in \{0,1,2\}}} \}$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i]) \otimes (\bigotimes_{i \in \{0,1,2\}} new]$ updates = loads + new_loads $\{ \bigotimes_{i \in \{0,1,2\}} updates[i] \land \dots \}$ loads = updates $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$



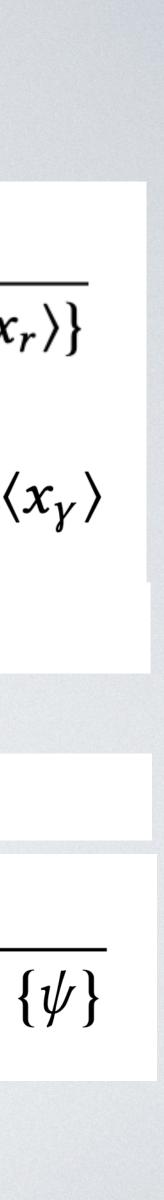
 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < | task | + 1) \}$ $new_load = one-hot(3)$ {($\circledast_{i \in \{0,1,2\}}$ loads[i] * OH₃[new_loads] $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i] * \bigotimes_{i \in \{0,1,2\}} new_{low_{i \in \{0,1,2\}}} \}$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i]) \otimes (\bigotimes_{i \in \{0,1,2\}} new]$ updates = loads + new_loads $\{ \bigotimes_{i \in \{0,1,2\}} updates[i] \land \dots \}$ loads = updates $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$



 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < | task | + 1) \}$ $new_load = one-hot(3)$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i] * OH_3[new_loads]\}$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i] * \bigotimes_{i \in \{0,1,2\}} new_{low_{i \in \{0,1,2\}}} \}$ $\{(\bigotimes_{i \in \{0,1,2\}} | oads[i]) \otimes (\bigotimes_{i \in \{0,1,2\}} new]$ updates = loads + new_loads $\{ \bigotimes_{i \in \{0,1,2\}} updates[i] \land \dots \}$ loads = updates $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$

Mono-map Axiom

DAssn $\vdash \{\psi[e_d/x_d]\} \ x_d \leftarrow e_d \ \{\psi\}$



tasks = [A, ..., Z] loads = [0, 0, 0]i = 0 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ while i < |tasks|: i = i + 1 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$ $new_load = one-hot(3)$ loads = loads + new_load $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$ overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

Scoping back ...

tasks = [A, ..., Z]loads = [0, 0, 0]i = 0 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ while i < |tasks|: i = i + 1 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$ $new_load = one-hot(3)$ loads = loads + new_load $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$ overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$

Scoping back ...

tasks = [A, ..., Z]loads = [0, 0, 0]i = 0 $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ while i < |tasks|: i = i + 1 $\{ \circledast_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i < |task| + 1) \}$ $new_load = one-hot(3)$ loads = loads + new_load $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \}$ $\{ \bigotimes_{i \in \{0,1,2\}} | oads[i] \land Detm[i] \land Detm[task] \land (i \ge | task |) \}$ overflow = $[n \ge 10 \text{ for } n \text{ in loads}]$ $\{ \bigotimes_{i \in \{0,1,2\}} \text{overflow}[i] \}$

Scoping back ...

- M-BI logic: a sound and complete extension of BI that supports ordered separating conjunctions

- M-BI logic: a sound and complete extension of BI that
 - supports ordered separating conjunctions
- Details of the (M)-BI model for negative association

- M-BI logic: a sound and complete extension of BI that
 - supports ordered separating conjunctions
- Details of the (M)-BI model for negative association
- Details of the NA-Frame rule

- M-BI logic: a sound and complete extension of BI that
 - supports ordered separating conjunctions
- Details of the (M)-BI model for negative association
- Details of the NA-Frame rule
- Applications to various probabilistic data structure
 - Bloom filter

 - Permutation Hashing [Ding and König 2011] - Fully-dynamic dictionary [Bercea and Even 2019]
 - Repeated balls-into-bins [Becchetti et al. 2019]

A SEPARATION LOGIC FOR NEGATIVE DEPENDENCE

Jialu Bao at PLDG, Oct. 6, 2021 Joint work with Marco Gaboardi, Justin Hsu, Joseph Tassarotti