o ARATION LOGIC T
G A L IVE DEPENDENNTE

Jialu Bao at PLDG, Oct. 6, 2021
Joint work with Marco Gaboardi, Justin Hsu, Joseph Tassarotti

Motivating Example

Motivating Example

Motivating Example

Bad events: collision, overflow, ...

Motivating Example

Bad events: collision, overflow, ...

tasks = [A, ..., Z]
loads = [0, O, O]
for task in tasks:
bin = uniform([0,1,2])
loads|bin| = loads|bin| + 1
overflow = [n >= 10 for n in loads]

Motivating Example

Bad events: collision, overflow, ...

tasks = [A, ..., Z]
loads = [0, O, O]
for task in tasks:
bin = uniform([0,1,2])
loads|bin| = loads|bin| + 1
overflow = [n >= 10 for n in loads]

Prob[z overflow]|i] > 1] <]

l

One standard recipe:

One standard recipe:

Concentration bound:

One standard recipe:

Concentration bound:

n
) o Z Y; ,where Y, are independent

l

One standard recipe:

Concentration bound:

n
3~ 2 Y; ,where Y, are independent

l

5 o 5
: I :

One standard recipe:

Concentration bound:

n
3~ Z Y; ,where Y, are independent
l

5] 5
: I :

Prob[|Y — E[Y]| > M] < f(n, M)

One standard recipe:

Concentration bound: Pmblz overflow[i] > 1] <9

n
3~ 2 Y; ,where Y, are independent
l

5 o 5
: I :

Prob[|Y — E[Y]| > M] < f(n, M)

One standard recipe:

Concentration bound: PrOblz OVGI”ﬂOW[i] > 1] < %

n
3~ Z Y; ,where Y; are independent
l

5] 5
: I :

The bins' loads are not

Prob[|Y — E[Y]| > M] < f(n, M) T ndependent!

One standard recipe:

Concentration bound: Pmblz overflow[i] > 1] <9

n
3~ Z Y; ,where Y; are independent
l

5 o 5
: I :

The bins' loads have

Prob[|Y — E[Y]]| > M] < f(n,M) § negative dependence!

One standard recipe:

Concentration bound: Pmblz overflow[i] > 1] <9

n
3~ Z ORI W EE-TTY negative dependence
l

5 o 5
: I :

The bins' loads have

Prob[|Y — E[Y]]| > M] < f(n,M) § negative dependence!

One standard recipe: How to prove negative dependence formally?

Concentration bound: P”Oblz overflow[i] > 1] <9

n
3~ Z Y; ,where Y, are [iSciilVRe[Slsllale/Slalel

l

5 o 5
: I :

The bins' loads have

Prob[|Y — E[Y]]| > M] < f(n,M) negative dependence!

Our Contribution

Our Contribution

- A program logic for proving negative dependence
- Extending probabilistic separation logic [Barthe et al. 2020]

Our Contribution

- A program logic for proving negative dependence
- Extending probabilistic separation logic [Barthe et al. 2020]
- Show its applications to various probabilistic data structure
- Bloom filter [Bloom 1970]
- Permutation Hashing [Ding and Konig 201 1]
- Fully-dynamic dictionary [Bercea and Even 201 9]
- Repeated balls-into-bins [Becchetti et al. 201 9]

EGA L IVE DEPENDENTE

Probabilities 10|

Probabilities 10|

A distribution over a finite set S is a function y : § — [0,1] such that Z,u(s) =

SES

Probabilities 10|

A distribution over a finite set S is a function u : $ — |0,1] such that Z,u(s) =

SES

Expected value of a (discrete) random variable X in distribution pu is Z uX=v)- v

Vv

Probabilities 10|

A distribution over a finite set S is a function u : $ — |0,1] such that Z,u(s) =

SES

Expected value of a (discrete) random variable X in distribution pu is 2 uX=v)- v

.
Af
Marginal distribution fy (x;) = Z Tx, x, (X1, %) W f
nEX, (marginal) o (r’:(a)rginal)
(joint)
| “i’*~ volume=1
fx, (%) = 2 S, x, (%1, %) “{ SO
e, i

Fupca(X1,0)

(conditional)

Probabilities 10|

A distribution over a finite set S is a function u : $ — |0,1] such that Z,u(s) =

SES

Expected value of a (discrete) random variable X in distribution u is Z uX=v)- v

Af
Marginal distribution fy (x;) = Z Tx, x, (X1, %)

X,EX,

()

(marginal)

fxa)

(marginal)

sz(Xz) = Z fxl,Xz(prz)

X1EX|

(conditional)

Probabilities 10|

A distribution over a finite set S is a function u : $ — |0,1] such that Z,u(s) =

SES

Expected value of a (discrete) random variable X in distribution u is Z uX=v)- v

Af

Marginal distribution fy (x;) = Z Tx, x, (X1, %)

X,EX,

()

(marginal)

fxa)

(marginal)

sz(Xz) = Z fxl,Xz(prz)

X1EX|

fl
ot
4"

Fxa(X4,0)
(conditional)

Negative Dependence

Negative Dependence

Negative Covariance

Negative Regression
Negative Association (NA)

Negative Right Orthant Dependence

Negative Quadrant Dependence

Negative Association

Let X, ..., X, be non-negative random variables.

A. Negative Covariance:

Forany I C {1,...,n}, _[HXi] < H - [X

el el

Negative Association

Let X, ..., X, be non-negative random variables.

A. Negative Covariance:
Forany 1 C {1.....n}, E[| [X1 < | | ElxX)
i€l i€l

05:-04+05-0<L0.5-0.5

Negative Ass

Let X, ..., X, be non-negative random variables.

A. Negative Covariance:
Forany I C (1,...,n}, E[] [X1 < |] ELX]
i€l i€l

05:-0+05-0<L£0.5-0.5

coin T

colin 2

Negative Ass

Let X, ..., X, be non-negative random variables.

A. Negative Covariance:
Forany I C (1,...,n}, E[] [X1 < |] ELX]
i€l i€l

05:-0+05-0<L£0.5-0.5

coin T

colin 2

Negative Ass

Let X, ..., X, be non-negative random variables.

A. Negative Covariance:
Forany I C (1,...,n}, E[] [X1 < |] ELX]
i€l i€l

05:-0+05-0<L£0.5-0.5

C. Negative Association:

coin 1

colin 2

Examples of NA random variables:

Examples of NA random variables:

- Deterministic variables

Examples of NA random variables:

- Deterministic variables

- Independent random variables

Examples of NA random variables:
- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to |

Examples of NA random variables: one-hot vectors

- Deterministic variables X1 X, X5

- Independent random variables nnn
- Bernoulli random variables that sum to | nnn

Examples of NA random variables: one-hot vectors

- Deterministic variables X1 X, X5

- Independent random variables nnn

- Bernoulli random variables that sum to | nnn
- Uniformly random permutations nnn

Examples of NA random variables: one-hot vectors

- Deterministic variables X1 X, X5

- Independent random variables nnn
- Bernoulli random variables that sum to | nnn

- Uniformly random permutations

shufile(cards);
Y; = cardsi]

Closure of Negative Association:

Closure of Negative Association:

- Subsets of NA variables are NA

Closure of Negative Association:

- Subsets of NA variables are NA

Xl XZ
B
EAE
oo

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

Xl XZ
B
EAE
oo

ke

X
Closure of Negative Association:

|
- Subsets of NA variables are NA nn
nn shuffle(cards);
- Union of independent NA sets is also NA Y. = cards]i]

£
S

Closure of Negative Association:

- Subsets of NA variables are NA
shuftle(cards);

Y; = cards|i}

- Union of independent NA sets is also NA

if two processes independent,
X, X5, Y, ..., Y } satisfies NA

£
S

Closure of Negative Association:

- Subsets of NA variables are NA
shuftle(cards);

- Union of independent NA sets is also NA Y. = cards]i]

- Monotonically increasing map preserves NA

if two processes independent,
X, X5, Y, ..., Y } satisfies NA

Xl XZ
Closure of Negative Association: nn
- Subsets of NA variables are NA

shuftle(cards);
- Union of independent NA sets is also NA Y. = cards]i]

- Monotonically increasing map preserves NA nn

if two processes independent,
X, X5, Y, ..., Y } satisfies NA

L.

ZI=X1+Y1 ZZZXQ'YQ

Xl XZ
Closure of Negative Association: nn
- Subsets of NA variables are NA

shuftle(cards);
- Union of independent NA sets is also NA Y. = cards]i]

- Monotonically increasing map preserves NA nn

if two processes independent,
X, X5, Y, ..., Y } satisfies NA

L.

ZI=X1+Y1 ZZZXQ'YQ

2,2y, Ys, ..., Y }satisfies NA

Proving NA for our example

Simple scheduler

tasks = [A, ..., Z]

loads = |0, O, O]

for task in tasks:
bin = uniform(|0,1,2])
loads|bin| = loads|bin]| + 1

overflow = [n >= 10 for n in loads]

Proving NA for our example

Simple scheduler

tasks = [A, ..., Z]

loads = |0, O, O]

for task in tasks:
bin = uniform(|0,1,2]) new_load = one-hot(3)
loads|bin] = loads|bin]| + 1 loads = loads + new_load

overflow = [n >= 10 for n in loads]

Proving NA for our example

Simple scheduler

tasks = [A, ..., Z]

loads = |0, O, O]

for task in tasks:
new_load = one-hot(3)
loads = loads + new_load

overflow = [n >= 10 for n in loads]

Proving NA for our example

Simple scheduler
tasks = [A, ..., Z]
loads = [0, O, O] Deterministic NA
for task in tasks:
new_load = one-hot(3)
loads = loads + new_load

overflow = [n >= 10 for n in loads]

Proving NA for our example

Simple scheduler
tasks = [A, ..., Z]
loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3)
loads = loads + new_load

overflow = [n >= 10 for n in loads]

Proving NA for our example

Simple scheduler
tasks = [A, ..., Z]
loads = [0, O, O] Deterministic NA

for task in tasks: Inductive Hypothesis

new_load = one-hot(3) One-Hot NA

loads = loads + new load

overflow = [n >= 10 for n in loads]

Proving NA for our example

new load

Simple scheduler
tasks = [A, ..., Z]
loads = [0, O, O] Deterministic NA

for task in tasks: Inductive Hypothesis

new_load = one-hot(3) One-Hot NA

loads = loads + new load

overflow = [n >= 10 for n in loads]

Proving NA for our example

loads | new load

Simple scheduler

tasks = [A, ..., Z]

loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3) One-Hot NA Independent union NA

loads = loads + new load

overflow = [n >= 10 for n in loads]

Proving NA for our example

.|.|

Simple scheduler

tasks = [A, ..., Z]

loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3) One-Hot NA Independent union NA

loads = loads + new load

overflow = [n >= 10 for n in loads]

Proving NA for our example

.|.|

Simple scheduler

tasks = [A, ..., Z]

loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3) One-Hot NA Independent union NA

loads = loads + new_load Monotone map NA

overflow = [n >= 10 for n in loads]

Proving NA for our example

.|.|

Simple scheduler

tasks = [A, ..., Z]

loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3) One-Hot NA Independent union NA

loads = loads + new_load Monotone map NA

overflow = [n >= 10 for n in loads]

Proving NA for our example

.|.|

Simple scheduler

tasks = [A, ..., Z]

loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3) One-Hot NA Independent union NA

loads = loads + new_load Monotone map NA

overflow = [n >= 10 for n in loads]

Proving NA for our example

.|.|

Simple scheduler

tasks = [A, ..., Z]

loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3) One-Hot NA Independent union NA

loads = loads + new_load Monotone map NA

overflow = [n >= 10 for n in loads] Monotone map NA

Proving NA for our example

.|.|

Simple scheduler

tasks = [A, ..., Z]

loads = [0, O, O] Deterministic NA
for task in tasks: Inductive Hypothesis
new_load = one-hot(3) One-Hot NA Independent union NA

loads = loads + new_load Monotone map NA

overflow = [n >= 10 for n in loads] Monotone map NA

Entries in overflow are NA!

PROBABILISTIC SEPARATION LOGIC

Separation Logic

Separation Logic

- A flexible framework to reason about sharing and separation

Separation Logic

- A flexible framework to reason about sharing and separation

- Program logic
- Judgement:{P}C{Q}

Separation Logic

- A flexible framework to reason about sharing and separation

- Program logic

- Judgement:{P}C{Q}

- Assertion logic (logic of Bunched Implications, Bl)

E V) = pe AP | T |LIPAO|PVO|P=>0OIP<0 F 203

Separation Logic

- A flexible framework to reason about sharing and separation

- Program logic

- Judgement:{P}C{Q}

- Assertion logic (logic of Bunched Implications, Bl)

e P UV = pedP | T |LIPAO|PVO|P=>0OIP«x0F i 0}

Separation Logic

- A flexible framework to reason about sharing and separation

- Program logic

- Judgement:{P}C{Q}

- Assertion logic (logic of Bunched Implications, Bl)

e P UV = pedP | T |LIPAO|PVO|P=>0OIP«x0F i 0}

Separation Logic

- A flexible framework to reason about sharing and separation

- Program logic

- Judgement:{P}C{Q}

- Assertion logic (logic of Bunched Implications, Bl)

e P UV = pedP | T |LIPAO|PVO|P=>0OIP«x0F i 0}

£

Separation Logic

- A flexible framework to reason about sharing and separation

- Program logic

- Judgement:{P}C{Q}

- Assertion logic (logic of Bunched Implications, Bl)

e P UV = pedP | T |LIPAO|PVO|P=>0OIP«x0F i 0}

- Qutline:

- Intuition of P + O

- Semantics of Bl

£

- Programs and atomic propositions

- Proof rules of program logic

(x — vy) * (y — x)

value

10 42
location

Adapted from an image in “Separation Logic’ in CACM

(x — vy) * (y — x)

value

10 42
location

Adapted from an image in “Separation Logic’ in CACM

(x — vy) * (y — x)

value

10 42
location

Adapted from an image in “Separation Logic’ in CACM

(x — vy) * (y — x)

value 42

location

Adapted from an image in “Separation Logic’ in CACM

(x — vy) * (y — x)

value 10

location 10)

Adapted from an image in “Separation Logic’ in CACM

(x — vy) * (y — x)

value

10 42
location

Adapted from an image in “Separation Logic’ in CACM

(x — vy) * (y — x)

value 10 42
location
T—Y decomposes into Y=z
y X
and
separately

value 10 value 42
location location

Adapted from an image in “Separation Logic’ in CACM

F(x—y) s x)

value
location

value 10 42
42 42
49 4 location
T—Y decomposes into Y=z
y X
and
separately

value 10 value 42
location location

Adapted from an image in “Separation Logic’ in CACM

F(x—y) s x)

F Xy xmy)
=~ (X P YA P Y)

value 42 42 | S L

ocation 42 42 ocation O
T—Y decomposes into Y=z

y X
and

separately
value 10 value 42
location location 10]

Adapted from an image in “Separation Logic’ in CACM

Structures for Interpreting Bl

- A Kripke resource monoid is a set M with

- a partial binary operation o : M x M — M that is
- associative
- commutative

- an identity elemente ¢ M

- a pre-order C on M

Structures for Interpreting Bl

- A Kripke resource monoid is a set M with

- a partial binary operation o : M x M — M that is
- associative: x 0 (y 0 z) = (x o0y) o z,
- commutative

- an identity elemente ¢ M

- a pre-order C on M

Structures for Interpreting Bl

- A Kripke resource monoid is a set M with

- a partial binary operation o : M x M — M that is
- associative: x 0 (y 0 z) =(x 0y) 0 z,
- commutative:y O X = x Oy,

- an identity element e € M

- a pre-order C on M

Structures for Interpreting Bl

- A Kripke resource monoid is a set M with

- a partial binary operation o : M x M — M that is
- associative: x 0 (y 0z) =(x 0y) 0 z,
- commutative:y O X =X Oy,

- an identity elemente e M:e 0 X =x 0 e = X,

- a pre-order C on M

Structures for Interpreting Bl

- A Kripke resource monoid is a set M with

- a partial binary operation ©c: M X M — M that is
- associative: x 0 (y 0 z) =(x 0 y) 0 z,
- commutative:y O X =X Oy,

- an identity elemente e M:e 0 X =x 0 e = X,

- a pre-order C on M:

- transitive: if x C yand y C z, then x C z;

- reflexive: x C x for any x

xamples of Kripke Resource Monoid

xamples of Kripke Resource Monoid

Distribution model

xamples of Kripke Resource Monoid

Distribution model

- Let M be the set of distributions over memories,

xamples of Kripke Resource Monoid

Distribution model

- Let M be the set of distributions over memories,
- for distributions f : X — [O,1]and g : Y — |0,1], f° ¢ defined to be

their independent product if X, Y are disjoint, otherwise undefined

xamples of Kripke Resource Monoid

Distribution model

- Let M be the set of distributions over memories,
- for distributions f : X — [O,1]and g : Y — |0,1], f° ¢ defined to be

their independent product if X, Y are disjoint, otherwise undefined

xamples of Kripke Resource Monoid

Distribution model

- Let M be the set of distributions over memories,
- for distributions f: X — |0,1]and g : Y — [0,1], fo g defined to be
their independent product if X, Y are disjoint, otherwise undefined

- an identity element e: deterministic distribution on empty memory

- 8(Y)

xamples of Kripke Resource Monoid

Distribution model

- Let M be the set of distributions over memories,
- for distributions f: X — |0,1]and g : Y — [0,1], fo g defined to be
their independent product if X, Y are disjoint, otherwise undefined

- an identity element e: deterministic distribution on empty memory

e(()) =1

- 8(Y)

xamples of Kripke Resource Monoid

Distribution model

- Let M be the set of distributions over memories,
- for distributions f: X — |0,1]and g : Y — [0,1], fo g defined to be
their independent product if X, Y are disjoint, otherwise undefined

- an identity element e: deterministic distribution on empty memory

- f C h if h marginalizes into f

e(()) =1

- 8(Y)

xamples of Kripke Resource Monoid

Distribution model

- Let M be the set of distributions over memories,
- for distributions f: X — |0,1]and g : Y — [0,1], fo g defined to be
their independent product if X, Y are disjoint, otherwise undefined

- an identity element e: deterministic distribution on empty memory

- f C h if h marginalizes into f

e(()) =1

- 8(Y)

FxH—ysxyB—x

FXxH—ysxe—y
=X YAX P Y

value 42 42 | e
ocation 42 42 ocation
T—Y decomposes into Y=z
y X
and
separately
value 10 value 42
location location

Adapted from an image in “Separation Logic’ in CACM

FxH—ysxyB—x

FXxH—ysxe—y
=X YAX P Y

value 10 42 Heap model
value 42 42 | |
ocation 42 42 ocation
T—Y decomposes into Y=z
y X
and
separately
value 10 value 42
location location

Adapted from an image in “Separation Logic’ in CACM

Pumpkin
Spice Latte

Probabilistic
Separation Logic

credit to Joe Cutler

Satisfactions on Kripke Monoid

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p)

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p)

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p)

- mEPAQiIffmEPandmF O

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p)

- mEPAQiffmEPandmE O

- m E P = Q iff exist m,, m, with m; o m, defined and m; © m, C m such

that m F Pand m, E Q

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

T [I.

- mEPAQiffmEPandmkE Q P=x(Q

- m E P = Q iff exist m,, m, with m; o m, defined and m; © m, C m such

that m F Pand m, E Q

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p) .
- - P .

- mEPAQiffmEPandmkE Q P=x(Q

- m E P = Q iff exist m,, m, with m; o m, defined and m; © m, C m such

that m F Pand m, E Q

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p) .
- - P n

- mEPAQiffmEPandmkE Q P=x(Q

- m E P = Q iff exist m,, m, with m; o m, defined and m; © m, C m such

that m F Pand m, E Q

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p) .
- o P n

- mEPAQiffmEPandmkE Q P=x(Q

- m E P = Q iff exist m,, m, with m; o m, defined and m; © m, C m such

that m F Pand m, E Q

- In the independence model:

Satisfactions on Kripke Monoid

- We inductively define the satisfaction relations on m € M and assertions:

- mEpiffme 7 (p) .
- - P n

- mEPAQiffmEPandmkE Q P=x(Q

- m E P = Q iff exist m,, m, with m; o m, defined and m; © m, C m such

that m F Pand m, E Q

- In the independence model:

- m E (X) = (Y) iff variables X, Y are independent in m

Program logic

Program logic

- Judgement:{P}C{Q}

Program logic

- Judgement:{P}C{Q}

- Programs:

Program logic

- Judgement:{P}C{Q}
- Programs:

- Standard imperative language + sampling from uniform distribution

Program logic

- Judgement:{P}C{Q}
- Programs:
- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

Program logic

- Judgement:{P}C{Q}
- Programs:
- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

- pu F Ugle)

Program logic

- Judgement:{P}C{Q}

- Programs:

- Standard imperative language + sampling from uniform distribution
- Atomic propositions in the distribution model

- u F Ugre)

- u F Detm¢(e)

Program logic

- Judgement:{P}C{Q}
- Programs:
- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

- p EUge)
- 1 F Detm(e)

- ukFe~e

Program logic

- Judgement:{P}C{Q}
- Programs:
- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model
- pEUgle)

- u F Detm¢(e)

- ukFe~e

- uk(e)iffuFe~e

Proof Rules

x, ¢ FV(9)

RSAMP*

F {9} xr & Us {¢ * Ug(x;)}

Proof Rules

x, ¢ FV(9)
F{¢} xr & Us {¢ * Us(x,)}

RSAMP*

- {p}cly) ¢ does not modifies FV(n) side conditions

FRAME

= {¢ = nicly * n}

A SEPARATION LOGIC FOR
NEGATIVE DEPENDENCE

Independence — Negative Association

on assertion logic

Independence — Negative Association

on assertion logic

(X)) = (X5) = ... = (X)) asserts X, ..., X, independent in distribution model

Independence — Negative Association

on assertion logic

(X)) = (X5) = ... = (X)) asserts X, ..., X, independent in distribution model
Can we add another conjunction ® such that (X;) ® (X,) ® ... ® (X)
asserts X, ..., X, NA?

Challenge In the simplest case

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Define some @ : M xM— M, andlet u F (X;) ® (X,) iff exist u;, 1, with
U, @ u, defined and y; @ p, C pu such that pu; F (X;) and u, F (X,)

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Define some @: MxM—M,and X, X, NAinpu iff exist y;, u, with
U, @ u, defined and y; @ p, C pu such that pu; F (X;) and u, F (X,)

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Define some @: MxM—M,and X, X, NAinpu iff exist y;, u, with
U, @ u, defined and y; @ p, C pu such that pu; F (X;) and u, F (X,)

1
/41(X1 =1) = ﬂz(Xz =1) = g

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Define some @: MxM—M,and X, X, NAinpu iff exist y;, u, with
U, @ u, defined and y; @ p, C pu such that pu; F (X;) and u, F (X,)

1
/41(X1 =1) = ﬂz(Xz =1) = g

2
u(X; =0) = u, (X, =0) = g

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Define some @: MxM—M,and X, X, NAinpu iff exist y;, u, with
U, @ u, defined and y; @ p, C pu such that pu; F (X;) and u, F (X,)

<
P

1
/41(X1 =1) = //iz(Xz =1) = g

2
u(X; =0) = u, (X, =0) = g

BEES

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Define some @: MxM—M,and X, X, NAinpu iff exist y;, u, with
U, @ u, defined and y; @ p, C pu such that pu; F (X;) and u, F (X,)

<
P

1
/41(X1 =1) = //iz(Xz =1) = E

H D Uy =

2
u(X; =0) = u, (X, =0) = g

2
9
2
9
4
9
1
9

ks
[0 1]
EREE
1] 1]

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Define some @: MxM—M,and X, X, NAinpu iff exist y;, u, with
U; @ u, defined and p; @ u, C u such that y; E (X;) and u, F (X,)

<
P

X

ke

1
/41(X1 =1) = //iz(Xz =1) = g

H D Uy =

2
u(X; =0) = u, (X, =0) = g

HE

2
9
2
9
4
9
1
9

ks
[0 1]
EREE
1] 1]

Challenge In the simplest case

Say we want (X;) ® (X,) asserts X;, X, NA in distribution model

Define some @: MxM—M,and X, X, NAinpu iff exist y;, u, with
U; @ u, defined and p; @ u, C u such that y; E (X;) and u, F (X,)

UJ‘ —
<
P

Cl— el ol O}t
| || ||i‘l.| |
— D 1} @

wpXy=1) =X, =1) =

2
u(X; =0) = u, (X, =0) = g

Solution for the Challenge

Solution for the Challenge

- A Kripke resource monoid is a set M with

- a partial binary operation o : M x M — M that is
- associative
- commutative

- an identity elemente ¢ M

- a pre-order C on M

Solution for the Challenge

- A Kripke resource monoid is a set M with

- a binary operation © : M X M — SP(M) thatis
- associative
- commutative

- an identity elemente ¢ M

- a pre-order C on M

Solution for the Challenge

- ABI frame [Docherty 2019] is a set M with

- a binary operation © : M X M — SP(M) thatis
- associative
- commutative

- an identity elemente ¢ M

- a pre-order C on M

Solution for the Challenge

- ABI frame [Docherty 2019] is a set M with
- a binary operation © : M X M — SP(M) thatis
- associative

- commutative

- an identity element £ C M compatible with © and C
- a pre-order C on M

Solution for the Challenge

- ABI frame [Docherty 2019] is a set M with
- a binary operation © : M X M — SP(M) thatis
- associative

- commutative

- an identity element £ C M compatible with © and C
- a pre-order C on M

Uy @ u, = {pu | variables in py, u, satisfy some sort of NA in u }

Skipping other challenges, we have

(X)) ®(X,) ®... ® (X, asserts X;,X,,...,X, NA

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to |

- Uniformly random permutations

Closure of Negative Association:
- Subsets of NA variables are NA
- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to |

- Uniformly random permutations

All valid axioms!

Closure of Negative Association:
- Subsets of NA variables are NA
- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

Examples of NA random variables: P+QFP®(

- Deterministic variables
- Independent random variables
- Bernoulli random variables that sum to |

- Uniformly random permutations
All valid axioms!

Closure of Negative Association:
- Subsets of NA variables are NA
- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

Examples of NA random variables: P+QFP®(

- Deterministic variables N

- Independent random variables = OHN([xo, . . ., xN-1]) = yéx:)()(xﬂ
- Bernoulli random variables that sum to |

- Uniformly random permutations
All valid axioms!

Closure of Negative Association:
- Subsets of NA variables are NA
- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

Examples of NA random variables: P+QFP®(

- Deterministic variables N

- Independent random variables = OHN([xo, . . ., xN-1]) = yéx:)()(xﬂ
- Bernoulli random variables that sum to |

- Uniformly random permutations

All valid axioms! Mono-map Axiom

N [K,+1 N N
Closure of Negative Association: = @0(/\O <xy,a>) A /\Oyy = fy (%y.00- -2 Xpk,) = §>l=<)0<yy>
a= y=
- Subsets of NA variables are NA when fi,..., fn all monotone or all antitone

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

Independence — Negative Association

on program logic

Independence — Negative Association

on program logic

A RSamp rule for NA?

Independence — Negative Association

on program logic

xr € FV(¢)
RSAMmP*
A RSamp rule for NA? F{#} xr & Us {¢ * Us(x;)}

Independence — Negative Association

on program logic

xr € FV(¢)
RSAMmP*
A RSamp rule for NA? F{#} xr & Us {¢ * Us(x;)}

A frame rule for NA?

Independence — Negative Association

on program logic

x, ¢ FV(¢)
RSAMP*
A RSamp rule for NA? F{#} xr & Us {¢ * Us(x;)}
A frame rule for NA?
—{d}c{y} ¢ does not modifies FV(n) side conditions

—{¢ = nicly = nj

Independence — Negative Association

on program logic

x, ¢ FV(¢)
RSAMP*
A RSamp rule for NA? F{#} xr & Us {¢ * Us(x;)}
A frame rule for NA?
—{d}c{y} ¢ does not modifies FV(n) side conditions

{9 ® nicly ® 7}

Independence — Negative Association

on program logic

xr € FV(¢)
RSAMmP*
A RSamp rule for NA? F{#} xr & Us {¢ * Us(x;)}

A frame rule for NA?
c 1s a monotonically increasing map from dom(¢) to dom(y)
- {¢}cly} ¢ does not modifies FV(#n) side conditions

{9 ® nicly ® 7}

Independence — Negative Association

on program logic

xr € FV(¢)
RSAMmP*
A RSamp rule for NA? F{#} xr & Us {¢ * Us(x;)}

A frame rule for NA? NA preserved under monotone maps

¢ 1S a monotonically increasing map from dom(¢) to dom(y)
= {plcly} ¢ does not modifies FV(n) side conditions

{9 ® nicly ® 7}

Independence — Negative Association

on program logic

A frame rule for NA

—{d}c{y} ¢ does not modifies FV(n) side conditions

—{p ® nicly ® nj

Independence — Negative Association

on program logic

A frame rule for NA

(v) obtained from a monotonically increasing map on dom(¢)
= (¢ cio) ¢ does not modifies FV(n) side conditions

—{p @ nicl) ® n}

Independence — Negative Association

on program logic

A frame rule for NA

(v) obtained from a monotonically increasing map on dom(¢)
= (¢ cio) ¢ does not modifies FV(n) side conditions

NA-FRAME
¢ ® nicl) ® nj

APPLICATIONS

to the motivating example

tasks = [A, ..., Z]
loads = |0, O, O]

for task in tasks:
new_load = one-hot(3)

loads = loads + new load

overflow = [n >= 10 for n in loads]

tasks = [A, ..., Z]
loads = |0, O, O]
1=0

while 1 < |tasks|:
1i=1+1
new_load = one-hot(3)

loads = loads + new load

overflow = [n >= 10 for n in loads]

e el B In our Informal proof
loads = |0, O, O]

1=0
{®;c(0,1.2110ads[i]}
while 1 < |tasks|:
1i=1+1
new_load = one-hot(3)
loads = loads + new_load
{®;c(0.1.2)l0ads|i]}

overflow = [n >= 10 for n in loads]

tasks = [A, ..., Z]
loads = |0, O, O]
1=0

while 1 < |tasks|:

1=1+1 L F{p Ab ~ tt} c {¢p} = ¢ — Detm(b)
new_load = one-hot(3) oOF - {¢} while bdo c {p A b ~ ff}

loads = loads + new load

overflow = [n >= 10 for n in loads]

I8 ks = A ..., Z]
loads = |0, O, O]
1=0
{®;c(0.1.2)l0ads[i] A Detm[i] A Detm[task]}
while 1 < |tasks|:
1=1+1 F{p Ab ~ tt} c {9} = ¢ — Detm(b)

L
new_load = one-hot(3) oOF - {¢} while bdo c {p A b ~ ff}

loads = loads + new load

{®ie{0,1,2}|0ads[i] A Detm|i] A Detm|[task] A (i > |task]|)}

overflow = [n >= 10 for n in loads]

I8 ks = A ..., Z]
loads = |0, O, O]
1=0
{®;c(0.1.2)l0ads[i] A Detm[i] A Detm[task]}
while 1 < |tasks|:
1=1+1 F{p Ab ~ tt} c {9} = ¢ — Detm(b)

L
new_load = one-hot(3) oOF - {¢} while bdo c {p A b ~ ff}

loads = loads + new load

{®ie{0,1,2}loads[i] A Detm|i] A Detm|[task] A (i > |task]|)}

overflow = [n >= 10 for n in loads]

{®;c(0.1.2)l0ads[i] A Detm[i] A Detm[task]}

while 1 < |tasks|:

1=1+1

F{p Ab ~ tt} c {9} = ¢ — Detm(b)
- {¢} while bdo c {¢p A b ~ ff}

new_load = one-hot(3)

Loopr

loads = loads + new load

{@ie{o,1,2}|°ad5[i] A Detm|i] A Detm|[task] A (i > |task]|)}

{®;c(0.1.2)l0ads[i] A Detm[i] A Detm[task]}
while 1 < |tasks|:
{®i€{0,1,2}loads[i] A Detm][i] A Detm|[task] A (i < |task])}

1=1+1

F{p Ab ~ tt} c {¢} = ¢ — Detm(b)
- {¢} whilebdoc {¢p Ab ~ ff}

new_load = one-hot(3)

Loopr

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{@ie{o,1,2}|°ad5[i] A Detm|i] A Detm|[task] A (i > |task]|)}

{®;c(0.1.2)l0ads[i] A Detm[i] A Detm[task]}
while 1 < |tasks|:
{®i€{0,192}|oads[i] A Detm][i] A Detm|[task] A (i < |task])}

1=1+1

new_load = one-hot(3)

DASSN

F (Ylea/xal} xqa < eq (Y}

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{@ie{o,1,2}|°ad5[i] A Detm|i] A Detm|[task] A (i > |task]|)}

{®;c(0.1.2110ads[i] A Detm[i] A Detm|task]}

while 1 < |tasks|:
{®i€{0,1,2}loads[i] A Detm][i] A Detm|[task] A (i < |task])}
1=1+1
{@ie{oal’z}loads[i] A Detm[i] A Detm|[task] A (i < |task]| + 1)}

new_load = one-hot(3)

DASSN

- {Vlea/xal} xa < eq {V}

loads = loads + new load

{®;c(0.1.2)l0ads[i] A Detm[i] A Detm[task]}

{@ie{o,1,2}|°ad5[i] A Detm|i] A Detm|[task] A (i > |task]|)}

{®;c(0.1.2)10ads[i] A Detm[i] A Detm]task] }

while 1 < |tasks|:
{®i€{0,1,2}loads[i] A Detm][i] A Detm|[task] A (i < |task])}
1=1+1
{@ie{oal’z}loads[i] A Detm[i] A Detm|[task] A (i < |task]| + 1)}

new_load = one-hot(3)

DASSN

- {Vlea/xal} xa < eq {V}

loads = loads + new load

{®;c(0.1.2)l0ads[i] A Detm[i] A Detm[task]}

{@ie{o,1,2}|°ad5[i] A Detm|i] A Detm|[task] A (i > |task]|)}

{@ie{o,l,z}loads[i] A Detm[i] A Detm|[task] A (i < [task| + 1)}

new_load = one-hot(3)

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{@ie{o,l,z}loads[i] A Detm[i] A Detm|[task] A (i < [task| + 1)}

new_load = one-hot(3) x, € FV(¢)

RSAmp*
F{o} x, & Us {¢ * Ug(x,)}

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{@ie{o,l,z}loads[i] A Detm[i] A Detm|[task] A (i < [task| + 1)}

new_load = one-hot(3) x, € FV(¢)

RSAMP™

{(®;cq0.1.2110ads[i] + OHz[new_loads]) A ...} F{¢} xr & Us {¢ * Us(x,)}

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{®;c(0.1.2110ads[i] A Detm[i] A Detm[task] A (i < |task | + 1)}

new_load = one-hot(3) - xr € FV(9)
AMP

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {9 * Us(xy)}

N
= OHn([x0,...,XN-1]) & gx:)o(xy)

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{@ie{o,l,z}loads[i] A Detm[i] A Detm|[task] A (i < [task| + 1)}

new_load = one-hot(3)
{(®;e(0,1.2110ads[i] + OH;3[new_loads]) A ...}

{(®jer0.10l0ads[i] * @10y new_load[i]) A ...}

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

RSAMP™

x, ¢ FV(9)
F{¢} xr & Us {¢ * Us(x,)}

N
= OHn([x0,...,XN-1]) & gx:)o(xy)

{®;c(0.1.2110ads[i] A Detm[i] A Detm[task] A (i < |task | + 1)}

new_load = one-hot(3) - xr € FV(9)
AMP

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {¢ * Us(x,)}

N
U(®jcq0.12110ads[i] = @;cr010) new_load[i]) A ...} | OHN([xo,...,xN-1]) = @)(xy)
e

P«OFP®OQO

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{®;c(0.1.2110ads[i] A Detm[i] A Detm[task] A (i < |task | + 1)}

new_load = one-hot(3) - xr € FV(9)
AMP

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {9 * Us(xy)}

N
U(®jcq0.12110ads[i] = @;cr010) new_load[i]) A ...} | OHN([xo,...,xN-1]) = @)(Xﬂ
e

{((@ie{o,l,z}loads[i]) ® (@ie{o,laz}new_load[i])) A } P+«OFP®Q

loads = loads + new load

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{®ie{0,1,2}|°ad5[i] A Detm[i] A Detm|[task] A (i < [task| + 1)}

new_load = one-hot(3) x, € FV(¢)

RSAMP™

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {¢ * Us(x,)}

N
{U(®jci0.12)l0ads[i] *+ @191y new_load[i]) A ...} = OHN([x0, ..., xN-1]) = @)(Xﬂ
b

{((@ie{o,l,z}loads[i]) ® (@ie{o,laz}new_load[i])) A } P+«OFP®Q

updates = loads + new_loads

loads = updates

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{®ie{0,1,2}|°ad5[i] A Detm[i] A Detm|[task] A (i < [task| + 1)}

new_load = one-hot(3) x, € FV(¢)

RSAMP™

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {¢ * Us(x,)}

N
{U(®jci0.12)l0ads[i] *+ @191y new_load[i]) A ...} = OHN([x0, ..., xN-1]) = @)(Xﬂ

{((@ie{o,l,z}loads[i]) ® (@ie{o,laz}new_load[i])) A } P+«OFP®Q

updates = loads + new_loads Mono-map Asxiom

loads = updates

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

{®ie{0,1,2}|°ad5[i] A Detm[i] A Detm|[task] A (i < [task| + 1)}

new_load = one-hot(3) - xr € FV(9)
AMP

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {¢ * Us(x,)}

N
{U(®jci0.12)l0ads[i] *+ @191y new_load[i]) A ...} = OHN([x0, ..., xN-1]) = @)(Xﬂ
b

{((@ie{o,l,z}loads[i]) ® (@ie{o,laz}new_load[i])) A } P+«OFP®Q

updates = loads + new_loads

{@ie{o,laz}UPdateS[i] N ... }
loads = updates

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

Mono-map Axiom

{®ie{0,1,2}|°ad5[i] A Detm[i] A Detm|[task] A (i < [task| + 1)}

new_load = one-hot(3) - xr € FV(9)
AMP

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {¢ * Us(x,)}

N
{U(®jci0.12)l0ads[i] *+ @191y new_load[i]) A ...} = OHN([x0, ..., xN-1]) = @)(Xﬂ
b

{((@ie{o,l,z}loads[i]) ® (@ie{o,laz}new_load[i])) A } P+«OFP®Q

updates = loads + new_loads

{@ie{o,laz}UPdateS[i] N ... }
loads = updates

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

Mono-map Axiom

{®ie{0,1,2}|°ads[i] A Detm[i] A Detm|[task] A (i < |task| + 1)}

new_load = one-hot(3) - xr € FV(9)
AMP

{(®,~€{O,1,2}Ioads[i] + OH3z[new_loads]) A ...} F {9} xr & Us {¢ * Us(x,)}

N
{U(®jci0.12)l0ads[i] *+ @191y new_load[i]) A ...} = OHN([x0, ..., xN-1]) = é@o(xy)
b

{((@ie{o,l,z}loads[i]) ® (@ie{o,laz}new_load[i])) A } P+«OFP®Q

updates = loads + new_loads

. Mono-map Axiom
{@ie{o,laz}UPdateS[l] N ... }

_ DASSN
loads = updates - {U[eqa/xq]} xq — eq {V)}

{®;c(0.1.2;l0ads[i] A Detm[i] A Detm([task] }

taeks — A, ..., Z]

loads = [0, O, O] SCOpIﬂg baCk 1

i=0
{@ie{o,l’z}loads[i] A Detm]i] A Detm|task] }
while 1 < |tasks]|:
i=1+1
{®;cr0.1.0110ads[i] A Detm[i] A Detm[task] A (i < |task| + 1)}
new_load = one-hot(3)
loads = loads + new_load

{®;c(0.12yl0ads[i] A Detm[i] A Detm|task] |
{@ie{o,laz}loads[i] A Detm|i] A Detm|[task] A (i > |task])}

overflow = [n >= 10 for n in loads]

taeks — A, ..., Z]

loads = [0, O, O] SCOpIﬂg baC|< 1

i=0
{®;c(0.10)l0ads[i] A Detm[i] A Detm|task] }
while 1 < |tasks]|:
i=1+1
{®;cr0.1.0110ads[i] A Detm[i] A Detm[task] A (i < |task| + 1)}
new_load = one-hot(3)
loads = loads + new_load

{®;c(0.12yl0ads[i] A Detm[i] A Detm|task] |
{@ie{o,laz}loads[i] A Detm|i] A Detm|[task] A (i > |task])}

overflow = [n >= 10 for n in loads]
Mono-map Axiom

taeks — A, ..., Z]

loads = [0, O, O] SCOpIﬂg baC|< 1

i=0
{®;c(0.10)l0ads[i] A Detm[i] A Detm|task] }
while 1 < |tasks]|:
i=1+1
{®;cr0.1.0110ads[i] A Detm[i] A Detm[task] A (i < |task| + 1)}
new_load = one-hot(3)
loads = loads + new_load

{®;c(0.12yl0ads[i] A Detm[i] A Detm|task] |
{@ie{o,laz}loads[i] A Detm|i] A Detm|[task] A (i > |task])}

overflow = [n >= 10 for n in loads]

o I\/l _ A .
{®;c(0.12 0verflow]i] | ONO-Map AXIOM

More contents In our paper

More contents In our paper

- M-Bl logic: a sound and complete extension of Bl that

supports ordered separating conjunctions

More contents In our paper

- M-Bl logic: a sound and complete extension of Bl that
supports ordered separating conjunctions

- Details of the (M)-Bl model for negative association

More contents In our paper

- M-Bl logic: a sound and complete extension of Bl that
supports ordered separating conjunctions

- Details of the (M)-Bl model for negative association

- Details of the NA-Frame rule

More contents In our paper

- M-Bl logic: a sound and complete extension of Bl that
supports ordered separating conjunctions
- Details of the (M)-Bl model for negative association
- Details of the NA-Frame rule
- Applications to various probabilistic data structure
- Bloom filter
- Permutation Hashing [Ding and Konig 201 1]
- Fully-dynamic dictionary [Bercea and Even 201 9]
- Repeated balls-into-bins [Becchetti et al. 201 9]

o ARATION LOGIC T
G A L IVE DEPENDENNTE

Jialu Bao at PLDG, Oct. 6, 2021
Joint work with Marco Gaboardi, Justin Hsu, Joseph Tassarotti

