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How to prove negative dependence formally?
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Our Contribution

- A program logic for proving negative dependence 
- Extending probabilistic separation logic [Barthe et al. 2020]

- Show its applications to various probabilistic data structure 
- Bloom filter [Bloom 1970]
- Permutation Hashing [Ding and König 2011]
- Fully-dynamic dictionary [Bercea and Even 2019]
- Repeated balls-into-bins [Becchetti et al. 2019]
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Negative Association (NA) 

Negative Covariance
Negative Regression

Negative Right Orthant Dependence 

Negative Quadrant Dependence
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Separation Logic
- A flexible framework to reason about sharing and separation
- Program logic 

- Judgement:{P}C{Q}
- Assertion logic (logic of Bunched Implications, BI) 

- P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q ∣ P − Q*
- Outline: 

- Intuition of  
- Semantics of BI 
- Programs and atomic propositions 
- Proof rules of program logic

P ∗ Q
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- A Kripke resource monoid is a set M with 
- a partial binary operation ◦ : M × M ⇀ M that is  

- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ z, 
- commutative: y ◦ x = x ◦ y, 

- an identity element e ∈ M: e ◦ x = x ◦ e = x,  
- a pre-order ⊑ on M:  

- transitive: if x ⊑ y and y ⊑ z, then x ⊑ z;  
- reflexive: x ⊑ x for any x

Structures for Interpreting BI
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- Let M be the set of distributions over memories, 

- for distributions  and  ,  defined to be 

their independent product if  are disjoint, otherwise undefined

f : X → [0,1] g : Y → [0,1] f ∘ g

X, Y

- an identity element e: deterministic distribution on empty memory

- f ⊑ h if h marginalizes into f
f g

X
Y

(f ◦ g) (x, y) = f(x)  g(y) ⋅

e(⟨⟩) = 1 h

Distribution model
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⊭ x ↦ y ∗ x ↦ y
⊨ x ↦ y ∧ x ↦ y

x         y

value
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⊭ x ↦ y ∗ y ↦ x

Heap model



credit to Joe Cutler
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Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on  and assertions: m ∈ M

-  iff m ⊨ p m ∈ 𝒱(p)
- … 

-  iff  and  m ⊨ P ∧ Q m ⊨ P m ⊨ Q

-  iff exist ,  with  ◦  defined and  ◦  ⊑  such 

that  and 

m ⊨ P ∗ Q m1 m2 m1 m2 m1 m2 m

m1 ⊨ P m2 ⊨ Q

- In the independence model: 

-  iff variables  are independent in m ⊨ ⟨X⟩ ∗ ⟨Y⟩ X, Y m

P ∗ Q

P Q
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Program logic
- Judgement:{P}C{Q}
- Programs: 

- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

- μ ⊧ UT⟨e⟩

- μ ⊧ Detm⟨e⟩

- μ ⊧ e ∼ e′ 

-  iff μ ⊧ ⟨e⟩ μ ⊧ e ∼ e
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Proof Rules

⊢ {ϕ}c{ψ}
⊢ {ϕ ∗ η}c{ψ ∗ η}

c does not modifies FV(η) side conditions
FRAME
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 asserts  independent in distribution model⟨X1⟩ ∗ ⟨X2⟩ ∗ … ∗ ⟨Xn⟩ X1, …, Xn

Can we add another conjunction  such that   

asserts  NA?

⊛ ⟨X1⟩ ⊛ ⟨X2⟩ ⊛ … ⊛ ⟨Xn⟩

X1, …, Xn

Independence  Negative Association→
on assertion logic
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μ1 ⊕ μ2 = {μ ∣ variables in μ1, μ2 satisfy some sort of NA in μ}



  asserts  NA⟨X1⟩ ⊛ ⟨X2⟩ ⊛ … ⊛ ⟨Xn⟩ X1, X2, …, Xn

Skipping other challenges, we have
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Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

- Uniformly random permutations

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

All valid axioms!

    
P ∗ Q ⊢ P ⊛ Q

Mono-map Axiom
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- M-BI logic: a sound and complete extension of BI that 

supports ordered separating conjunctions
- Details of the (M)-BI model for negative association
- Details of the NA-Frame rule
- Applications to various probabilistic data structure 

- Bloom filter
- Permutation Hashing [Ding and König 2011]
- Fully-dynamic dictionary [Bercea and Even 2019]
- Repeated balls-into-bins [Becchetti et al. 2019]
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