
A SEPARATION LOGIC FOR
NEGATIVE DEPENDENCE

Jialu Bao at PLDG, Oct. 6, 2021
Joint work with Marco Gaboardi, Justin Hsu, Joseph Tassarotti

Motivating Example

Motivating Example

Motivating Example

Bad events: collision, overflow, …

Motivating Example

 tasks = [A, …, Z]
 loads = [0, 0, 0]
 for task in tasks:
 bin = uniform([0,1,2])
 loads[bin] = loads[bin] + 1
 overflow = [n >= 10 for n in loads]

Bad events: collision, overflow, …

Motivating Example

 tasks = [A, …, Z]
 loads = [0, 0, 0]
 for task in tasks:
 bin = uniform([0,1,2])
 loads[bin] = loads[bin] + 1
 overflow = [n >= 10 for n in loads]

 Prob[∑
i

overflow[i] ≥ 1] ≤ ?

Bad events: collision, overflow, …

One standard recipe:

One standard recipe:

Concentration bound:

One standard recipe:

Concentration bound:

 , where are independentY =
n

∑
i

Yi Yi

One standard recipe:

Concentration bound:

 , where are independentY =
n

∑
i

Yi Yi

 𝔼[Y]

One standard recipe:

Concentration bound:

 , where are independentY =
n

∑
i

Yi Yi

 𝔼[Y]

Prob[|Y − 𝔼[Y] | ≥ M] ≤ f(n, M)

One standard recipe:

Concentration bound:

 , where are independentY =
n

∑
i

Yi Yi

 𝔼[Y]

Prob[|Y − 𝔼[Y] | ≥ M] ≤ f(n, M)

Prob[∑
i

overflow[i] ≥ 1] ≤ ?

One standard recipe:

Concentration bound:

 , where are independentY =
n

∑
i

Yi Yi

 𝔼[Y]

Prob[|Y − 𝔼[Y] | ≥ M] ≤ f(n, M)
The bins’ loads are not

independent!

Prob[∑
i

overflow[i] ≥ 1] ≤ ?

One standard recipe:

Concentration bound:

 , where are independentY =
n

∑
i

Yi Yi

 𝔼[Y]

Prob[|Y − 𝔼[Y] | ≥ M] ≤ f(n, M)
The bins’ loads are not

independent!

Prob[∑
i

overflow[i] ≥ 1] ≤ ?

The bins’ loads have
negative dependence!

One standard recipe:

Concentration bound:

 , where are independentY =
n

∑
i

Yi Yi

 𝔼[Y]

Prob[|Y − 𝔼[Y] | ≥ M] ≤ f(n, M)
The bins’ loads are not

independent!

Prob[∑
i

overflow[i] ≥ 1] ≤ ?

The bins’ loads have
negative dependence!

negative dependence

One standard recipe:

Concentration bound:

 , where are independentY =
n

∑
i

Yi Yi

 𝔼[Y]

Prob[|Y − 𝔼[Y] | ≥ M] ≤ f(n, M)
The bins’ loads are not

independent!

Prob[∑
i

overflow[i] ≥ 1] ≤ ?

The bins’ loads have
negative dependence!

negative dependence

How to prove negative dependence formally?

Our Contribution

Our Contribution

- A program logic for proving negative dependence
- Extending probabilistic separation logic [Barthe et al. 2020]

Our Contribution

- A program logic for proving negative dependence
- Extending probabilistic separation logic [Barthe et al. 2020]

- Show its applications to various probabilistic data structure
- Bloom filter [Bloom 1970]
- Permutation Hashing [Ding and König 2011]
- Fully-dynamic dictionary [Bercea and Even 2019]
- Repeated balls-into-bins [Becchetti et al. 2019]

NEGATIVE DEPENDENCE

Probabilities 101

Probabilities 101
•

A distribution over a finite set is a function such that S μ : S → [0,1] ∑
s∈S

μ(s) = 1

Probabilities 101
•

A distribution over a finite set is a function such that S μ : S → [0,1] ∑
s∈S

μ(s) = 1

• Expected value of a (discrete) random variable in distribution isX μ ∑
v

μ(X = v) ⋅ v

Probabilities 101
•

A distribution over a finite set is a function such that S μ : S → [0,1] ∑
s∈S

μ(s) = 1

• Expected value of a (discrete) random variable in distribution isX μ ∑
v

μ(X = v) ⋅ v

•
Marginal distribution

fX1
(x1) = ∑

x2∈X2

fX1,X2
(x1, x2)

fX2
(x2) = ∑

x1∈X1

fX1,X2
(x1, x2)

Probabilities 101
•

A distribution over a finite set is a function such that S μ : S → [0,1] ∑
s∈S

μ(s) = 1

• Expected value of a (discrete) random variable in distribution isX μ ∑
v

μ(X = v) ⋅ v

•
Marginal distribution

fX1
(x1) = ∑

x2∈X2

fX1,X2
(x1, x2)

fX2
(x2) = ∑

x1∈X1

fX1,X2
(x1, x2)

Probabilities 101
•

A distribution over a finite set is a function such that S μ : S → [0,1] ∑
s∈S

μ(s) = 1

• Expected value of a (discrete) random variable in distribution isX μ ∑
v

μ(X = v) ⋅ v

•
Marginal distribution

fX1
(x1) = ∑

x2∈X2

fX1,X2
(x1, x2)

fX2
(x2) = ∑

x1∈X1

fX1,X2
(x1, x2)

Negative Dependence

Negative Dependence

Negative Association (NA)

Negative Covariance
Negative Regression

Negative Right Orthant Dependence

Negative Quadrant Dependence

Negative Association

Let be non-negative random variables.

A. Negative Covariance:
For any ,

X1, …, Xn

I ⊆ {1,…, n} 𝔼[∏
i∈I

Xi] ≤ ∏
i∈I

𝔼[Xi]

Negative Association

Let be non-negative random variables.

A. Negative Covariance:
For any ,

X1, …, Xn

I ⊆ {1,…, n} 𝔼[∏
i∈I

Xi] ≤ ∏
i∈I

𝔼[Xi]

Negative Association

coin 1

coin 2

0.5 ⋅ 0 + 0.5 ⋅ 0 ≤ 0.5 ⋅ 0.5

0 1

0 0 0.5

1 0.5 0

Let be non-negative random variables.

A. Negative Covariance:
For any ,

X1, …, Xn

I ⊆ {1,…, n} 𝔼[∏
i∈I

Xi] ≤ ∏
i∈I

𝔼[Xi]

B. For any , for any family of non-negative monotone
functions that are all decreasing or all increasing,

I ⊆ {1,…, n}
{fi}i

𝔼[∏
i∈I

fi(Xi)] ≤ ∏
i∈I

𝔼[fi(Xi)]

Negative Association

coin 1

coin 2

0.5 ⋅ 0 + 0.5 ⋅ 0 ≤ 0.5 ⋅ 0.5

0 1

0 0 0.5

1 0.5 0

Let be non-negative random variables.

A. Negative Covariance:
For any ,

X1, …, Xn

I ⊆ {1,…, n} 𝔼[∏
i∈I

Xi] ≤ ∏
i∈I

𝔼[Xi]

B. For any , for any family of non-negative monotone
functions that are all decreasing or all increasing,

I ⊆ {1,…, n}
{fi}i

𝔼[∏
i∈I

fi(Xi)] ≤ ∏
i∈I

𝔼[fi(Xi)]

Negative Association

coin 1

coin 2

0.5 ⋅ 0 + 0.5 ⋅ 0 ≤ 0.5 ⋅ 0.5

0 1

0 0 0.5

1 0.5 0

∏
i∈J⊆I

fi : ℝ|J| → ℝ

Let be non-negative random variables.

A. Negative Covariance:
For any ,

X1, …, Xn

I ⊆ {1,…, n} 𝔼[∏
i∈I

Xi] ≤ ∏
i∈I

𝔼[Xi]

B. For any , for any family of non-negative monotone
functions that are all decreasing or all increasing,

I ⊆ {1,…, n}
{fi}i

𝔼[∏
i∈I

fi(Xi)] ≤ ∏
i∈I

𝔼[fi(Xi)]

C. Negative Association:
For any disjoint , any non-negative
functions and that are
both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ g : ℝ|J| → ℝ

𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤
𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Negative Association

coin 1

coin 2

0.5 ⋅ 0 + 0.5 ⋅ 0 ≤ 0.5 ⋅ 0.5

0 1

0 0 0.5

1 0.5 0

∏
i∈J⊆I

fi : ℝ|J| → ℝ

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Examples of NA random variables:

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Examples of NA random variables:

- Deterministic variables

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Examples of NA random variables:

- Deterministic variables

- Independent random variables

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

1 0 0

0 1 0

0 0 1

one-hot vectors
X1 X2 X3

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

- Uniformly random permutations

1 0 0

0 1 0

0 0 1

one-hot vectors
X1 X2 X3

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

- Uniformly random permutations

shuffle(cards);
 = cards[i]Yi

1 0 0

0 1 0

0 0 1

one-hot vectors
X1 X2 X3

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

- Subsets of NA variables are NA

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

- Subsets of NA variables are NA
1 0 0

0 1 0

0 0 1

X1 X2 X3

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

1 0 0

0 1 0

0 0 1

X1 X2 X3

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA
shuffle(cards);

 = cards[i]Yi

1 0 0

0 1 0

0 0 1

X1 X2 X3

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

if two processes independent,
{ , , , …, } satisfies NA X1 X2 Y1 Yn

shuffle(cards);
 = cards[i]Yi

1 0 0

0 1 0

0 0 1

X1 X2 X3

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

if two processes independent,
{ , , , …, } satisfies NA X1 X2 Y1 Yn

shuffle(cards);
 = cards[i]Yi

1 0 0

0 1 0

0 0 1

X1 X2 X3

NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

if two processes independent,
{ , , , …, } satisfies NA X1 X2 Y1 Yn

shuffle(cards);
 = cards[i]Yi

1 0 0

0 1 0

0 0 1

X1 X2 X3

 Z1 = X1 + Y1 Z2 = X2 ⋅ Y2
NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

if two processes independent,
{ , , , …, } satisfies NA X1 X2 Y1 Yn

shuffle(cards);
 = cards[i]Yi

satisfies NA {Z1, Z2, Y3, …, Yn}

1 0 0

0 1 0

0 0 1

X1 X2 X3

 Z1 = X1 + Y1 Z2 = X2 ⋅ Y2
NA: For any disjoint ,

any non-negative monotone functions and
 that are both decreasing or both increasing,

I, J ⊆ {1,…, n}
f : ℝ|I| → ℝ

g : ℝ|J| → ℝ
𝔼[f(Xi, i ∈ I) ⋅ g(Xj, j ∈ J)] ≤

𝔼[f(Xi, i ∈ I)] ⋅ 𝔼[g(Xj, j ∈ J)]

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

Inductive Hypothesis

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA
Inductive Hypothesis

loads new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA
Inductive Hypothesis

loads new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA } Independent union NA
Inductive Hypothesis

loads new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA } Independent union NA

+
+
+

Inductive Hypothesis

loads new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA } Independent union NA

Monotone map NA

+
+
+

Inductive Hypothesis

loads new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA } Independent union NA

Monotone map NA

+
+
+

Inductive Hypothesis

loads new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA } Independent union NA

Monotone map NA

+
+
+

Inductive Hypothesis

loads new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA } Independent union NA

Monotone map NA

+
+
+

Monotone map NA

Inductive Hypothesis

loads new_load

Proving NA for our example
Simple scheduler

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 bin = uniform([0,1,2])

 loads[bin] = loads[bin] + 1

 overflow = [n >= 10 for n in loads]

new_load = one-hot(3)

loads = loads + new_load

Deterministic NA

One-Hot NA } Independent union NA

Monotone map NA

+
+
+

Monotone map NA

Inductive Hypothesis

Entries in overflow are NA!

PROBABILISTIC SEPARATION LOGICPROBABILISTIC SEPARATION LOGIC

Separation Logic

Separation Logic
- A flexible framework to reason about sharing and separation

Separation Logic
- A flexible framework to reason about sharing and separation
- Program logic

- Judgement:{P}C{Q}

Separation Logic
- A flexible framework to reason about sharing and separation
- Program logic

- Judgement:{P}C{Q}
- Assertion logic (logic of Bunched Implications, BI)

- P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q ∣ P − Q*

Separation Logic
- A flexible framework to reason about sharing and separation
- Program logic

- Judgement:{P}C{Q}
- Assertion logic (logic of Bunched Implications, BI)

- P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q ∣ P − Q*

Separation Logic
- A flexible framework to reason about sharing and separation
- Program logic

- Judgement:{P}C{Q}
- Assertion logic (logic of Bunched Implications, BI)

- P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q ∣ P − Q*

Separation Logic
- A flexible framework to reason about sharing and separation
- Program logic

- Judgement:{P}C{Q}
- Assertion logic (logic of Bunched Implications, BI)

- P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q ∣ P − Q*

Separation Logic
- A flexible framework to reason about sharing and separation
- Program logic

- Judgement:{P}C{Q}
- Assertion logic (logic of Bunched Implications, BI)

- P, Q ::= p ∈ 𝒜𝒫 ∣ ⊤ ∣ ⊥ ∣ P ∧ Q ∣ P ∨ Q ∣ P ⇒ Q ∣ P ∗ Q ∣ P − Q*
- Outline:

- Intuition of
- Semantics of BI
- Programs and atomic propositions
- Proof rules of program logic

P ∗ Q

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

x y

value
location

42 42
42 42

⊭ (x ↦ y) ∗ (y ↦ x)

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

⊭ (x ↦ y) ∗ (x ↦ y)
⊨ (x ↦ y) ∧ (x ↦ y)

x y

value
location

42 42
42 42

⊭ (x ↦ y) ∗ (y ↦ x)

Structures for Interpreting BI
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ x,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M

Structures for Interpreting BI
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ z,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M

Structures for Interpreting BI
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ z,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M
- a pre-order ⊑ on M

Structures for Interpreting BI
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ z,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M:

- A Kripke resource monoid is a set M with
- a partial binary operation ◦ : M × M ⇀ M that is

- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ z,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M:

- transitive: if x ⊑ y and y ⊑ z, then x ⊑ z;
- reflexive: x ⊑ x for any x

Structures for Interpreting BI

Examples of Kripke Resource Monoid

Examples of Kripke Resource Monoid
Distribution model

Examples of Kripke Resource Monoid

- Let M be the set of distributions over memories,

Distribution model

Examples of Kripke Resource Monoid

- Let M be the set of distributions over memories,

- for distributions and , defined to be

their independent product if are disjoint, otherwise undefined

f : X → [0,1] g : Y → [0,1] f ∘ g

X, Y

Distribution model

Examples of Kripke Resource Monoid

- Let M be the set of distributions over memories,

- for distributions and , defined to be

their independent product if are disjoint, otherwise undefined

f : X → [0,1] g : Y → [0,1] f ∘ g

X, Y

f g

X
Y

(f ◦ g) (x, y) = f(x) g(y) ⋅

Distribution model

Examples of Kripke Resource Monoid

- Let M be the set of distributions over memories,

- for distributions and , defined to be

their independent product if are disjoint, otherwise undefined

f : X → [0,1] g : Y → [0,1] f ∘ g

X, Y

- an identity element e: deterministic distribution on empty memory

f g

X
Y

(f ◦ g) (x, y) = f(x) g(y) ⋅

Distribution model

Examples of Kripke Resource Monoid

- Let M be the set of distributions over memories,

- for distributions and , defined to be

their independent product if are disjoint, otherwise undefined

f : X → [0,1] g : Y → [0,1] f ∘ g

X, Y

- an identity element e: deterministic distribution on empty memory

f g

X
Y

(f ◦ g) (x, y) = f(x) g(y) ⋅

e(⟨⟩) = 1

Distribution model

Examples of Kripke Resource Monoid

- Let M be the set of distributions over memories,

- for distributions and , defined to be

their independent product if are disjoint, otherwise undefined

f : X → [0,1] g : Y → [0,1] f ∘ g

X, Y

- an identity element e: deterministic distribution on empty memory

- f ⊑ h if h marginalizes into f
f g

X
Y

(f ◦ g) (x, y) = f(x) g(y) ⋅

e(⟨⟩) = 1

Distribution model

Examples of Kripke Resource Monoid

- Let M be the set of distributions over memories,

- for distributions and , defined to be

their independent product if are disjoint, otherwise undefined

f : X → [0,1] g : Y → [0,1] f ∘ g

X, Y

- an identity element e: deterministic distribution on empty memory

- f ⊑ h if h marginalizes into f
f g

X
Y

(f ◦ g) (x, y) = f(x) g(y) ⋅

e(⟨⟩) = 1 h

Distribution model

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

⊭ x ↦ y ∗ x ↦ y
⊨ x ↦ y ∧ x ↦ y

x y

value
location

42 42
42 42

⊭ x ↦ y ∗ y ↦ x

Adapted from an image in “Separation Logic” in CACM

value
location

value
location

value
location

⊭ x ↦ y ∗ x ↦ y
⊨ x ↦ y ∧ x ↦ y

x y

value
location

42 42
42 42

⊭ x ↦ y ∗ y ↦ x

Heap model

credit to Joe Cutler

Satisfactions on Kripke Monoid

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)
- …

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)
- …

- iff and m ⊨ P ∧ Q m ⊨ P m ⊨ Q

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)
- …

- iff and m ⊨ P ∧ Q m ⊨ P m ⊨ Q

- iff exist , with ◦ defined and ◦ ⊑ such

that and

m ⊨ P ∗ Q m1 m2 m1 m2 m1 m2 m

m1 ⊨ P m2 ⊨ Q

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)
- …

- iff and m ⊨ P ∧ Q m ⊨ P m ⊨ Q

- iff exist , with ◦ defined and ◦ ⊑ such

that and

m ⊨ P ∗ Q m1 m2 m1 m2 m1 m2 m

m1 ⊨ P m2 ⊨ Q

P ∗ Q

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)
- …

- iff and m ⊨ P ∧ Q m ⊨ P m ⊨ Q

- iff exist , with ◦ defined and ◦ ⊑ such

that and

m ⊨ P ∗ Q m1 m2 m1 m2 m1 m2 m

m1 ⊨ P m2 ⊨ Q

P ∗ Q

P

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)
- …

- iff and m ⊨ P ∧ Q m ⊨ P m ⊨ Q

- iff exist , with ◦ defined and ◦ ⊑ such

that and

m ⊨ P ∗ Q m1 m2 m1 m2 m1 m2 m

m1 ⊨ P m2 ⊨ Q

P ∗ Q

P Q

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)
- …

- iff and m ⊨ P ∧ Q m ⊨ P m ⊨ Q

- iff exist , with ◦ defined and ◦ ⊑ such

that and

m ⊨ P ∗ Q m1 m2 m1 m2 m1 m2 m

m1 ⊨ P m2 ⊨ Q

- In the independence model:

P ∗ Q

P Q

Satisfactions on Kripke Monoid
- We inductively define the satisfaction relations on and assertions: m ∈ M

- iff m ⊨ p m ∈ 𝒱(p)
- …

- iff and m ⊨ P ∧ Q m ⊨ P m ⊨ Q

- iff exist , with ◦ defined and ◦ ⊑ such

that and

m ⊨ P ∗ Q m1 m2 m1 m2 m1 m2 m

m1 ⊨ P m2 ⊨ Q

- In the independence model:

- iff variables are independent in m ⊨ ⟨X⟩ ∗ ⟨Y⟩ X, Y m

P ∗ Q

P Q

Program logic

Program logic
- Judgement:{P}C{Q}

Program logic
- Judgement:{P}C{Q}
- Programs:

Program logic
- Judgement:{P}C{Q}
- Programs:

- Standard imperative language + sampling from uniform distribution

Program logic
- Judgement:{P}C{Q}
- Programs:

- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

Program logic
- Judgement:{P}C{Q}
- Programs:

- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

- μ ⊧ UT⟨e⟩

Program logic
- Judgement:{P}C{Q}
- Programs:

- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

- μ ⊧ UT⟨e⟩

- μ ⊧ Detm⟨e⟩

Program logic
- Judgement:{P}C{Q}
- Programs:

- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

- μ ⊧ UT⟨e⟩

- μ ⊧ Detm⟨e⟩

- μ ⊧ e ∼ e′

Program logic
- Judgement:{P}C{Q}
- Programs:

- Standard imperative language + sampling from uniform distribution

- Atomic propositions in the distribution model

- μ ⊧ UT⟨e⟩

- μ ⊧ Detm⟨e⟩

- μ ⊧ e ∼ e′

- iff μ ⊧ ⟨e⟩ μ ⊧ e ∼ e

F

Proof Rules

F

Proof Rules

F

Proof Rules

⊢ {ϕ}c{ψ}
⊢ {ϕ ∗ η}c{ψ ∗ η}

c does not modifies FV(η) side conditions
FRAME

A SEPARATION LOGIC FOR
NEGATIVE DEPENDENCE

A SEPARATION LOGIC FOR
NEGATIVE DEPENDENCE

Independence Negative Association→
on assertion logic

 asserts independent in distribution model⟨X1⟩ ∗ ⟨X2⟩ ∗ … ∗ ⟨Xn⟩ X1, …, Xn

Independence Negative Association→
on assertion logic

 asserts independent in distribution model⟨X1⟩ ∗ ⟨X2⟩ ∗ … ∗ ⟨Xn⟩ X1, …, Xn

Can we add another conjunction such that

asserts NA?

⊛ ⟨X1⟩ ⊛ ⟨X2⟩ ⊛ … ⊛ ⟨Xn⟩

X1, …, Xn

Independence Negative Association→
on assertion logic

Challenge in the simplest case

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

Define some M × M ⇀ M, and let iff exist , with

 defined and such that and

⊕ : μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ μ1 μ2

μ1 ⊕ μ2 μ1 ⊕ μ2 ⊑ μ μ1 ⊨ ⟨X1⟩ μ2 ⊨ ⟨X2⟩

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

Define some M × M ⇀ M, and let iff exist , with

 defined and such that and

⊕ : μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ μ1 μ2

μ1 ⊕ μ2 μ1 ⊕ μ2 ⊑ μ μ1 ⊨ ⟨X1⟩ μ2 ⊨ ⟨X2⟩
 NA in X1, X2 μ

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

μ1(X1 = 1) = μ2(X2 = 1) =
1
3

Define some M × M ⇀ M, and let iff exist , with

 defined and such that and

⊕ : μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ μ1 μ2

μ1 ⊕ μ2 μ1 ⊕ μ2 ⊑ μ μ1 ⊨ ⟨X1⟩ μ2 ⊨ ⟨X2⟩
 NA in X1, X2 μ

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

μ1(X1 = 1) = μ2(X2 = 1) =
1
3

μ1(X1 = 0) = μ2(X2 = 0) =
2
3

Define some M × M ⇀ M, and let iff exist , with

 defined and such that and

⊕ : μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ μ1 μ2

μ1 ⊕ μ2 μ1 ⊕ μ2 ⊑ μ μ1 ⊨ ⟨X1⟩ μ2 ⊨ ⟨X2⟩
 NA in X1, X2 μ

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

μ1(X1 = 1) = μ2(X2 = 1) =
1
3

μ1(X1 = 0) = μ2(X2 = 0) =
2
3

1 0

0 1

0 0

X1 X2

1 1

2
9
2
9
4
9
1
9

Define some M × M ⇀ M, and let iff exist , with

 defined and such that and

⊕ : μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ μ1 μ2

μ1 ⊕ μ2 μ1 ⊕ μ2 ⊑ μ μ1 ⊨ ⟨X1⟩ μ2 ⊨ ⟨X2⟩
 NA in X1, X2 μ

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

μ1(X1 = 1) = μ2(X2 = 1) =
1
3

μ1(X1 = 0) = μ2(X2 = 0) =
2
3

1 0

0 1

0 0

X1 X2

1 1

2
9
2
9
4
9
1
9

Define some M × M ⇀ M, and let iff exist , with

 defined and such that and

⊕ : μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ μ1 μ2

μ1 ⊕ μ2 μ1 ⊕ μ2 ⊑ μ μ1 ⊨ ⟨X1⟩ μ2 ⊨ ⟨X2⟩

μ1 ⊕ μ2 = ?

 NA in X1, X2 μ

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

μ1(X1 = 1) = μ2(X2 = 1) =
1
3

μ1(X1 = 0) = μ2(X2 = 0) =
2
3

1 0

0 1

0 0

X1 X2

1 1

2
9
2
9
4
9
1
9

1 0

0 1

0 0

X1 X2
1
3
1
3
1
3

Define some M × M ⇀ M, and let iff exist , with

 defined and such that and

⊕ : μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ μ1 μ2

μ1 ⊕ μ2 μ1 ⊕ μ2 ⊑ μ μ1 ⊨ ⟨X1⟩ μ2 ⊨ ⟨X2⟩

μ1 ⊕ μ2 = ?

 NA in X1, X2 μ

Say we want asserts NA in distribution model⟨X1⟩ ⊛ ⟨X2⟩ X1, X2

Challenge in the simplest case

μ1(X1 = 1) = μ2(X2 = 1) =
1
3

μ1(X1 = 0) = μ2(X2 = 0) =
2
3

1 0

0 1

0 0

X1 X2

1 1

2
9
2
9
4
9
1
9

1 0

0 1

0 0

X1 X2
1
3
1
3
1
3

Define some M × M ⇀ M, and let iff exist , with

 defined and such that and

⊕ : μ ⊨ ⟨X1⟩ ⊛ ⟨X2⟩ μ1 μ2

μ1 ⊕ μ2 μ1 ⊕ μ2 ⊑ μ μ1 ⊨ ⟨X1⟩ μ2 ⊨ ⟨X2⟩

μ1 ⊕ μ2 = ?

 NA in X1, X2 μ

Solution for the Challenge

Solution for the Challenge
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ x,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M

Solution for the Challenge
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ x,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M

binary operation ◦ : M × M → 𝒫(M)

Solution for the Challenge
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ x,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M

binary operation ◦ : M × M → 𝒫(M)
BI frame [Docherty 2019]

Solution for the Challenge
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ x,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M

binary operation ◦ : M × M → 𝒫(M)

 compatible with ◦ and ⊑E ⊆ M

BI frame [Docherty 2019]

Solution for the Challenge
- A Kripke resource monoid is a set M with

- a partial binary operation ◦ : M × M ⇀ M that is
- associative: x ◦ (y ◦ z) = (x ◦ y) ◦ x,
- commutative: y ◦ x = x ◦ y,

- an identity element e ∈ M: e ◦ x = x ◦ e = x,
- a pre-order ⊑ on M

binary operation ◦ : M × M → 𝒫(M)

 compatible with ◦ and ⊑E ⊆ M

BI frame [Docherty 2019]

μ1 ⊕ μ2 = {μ ∣ variables in μ1, μ2 satisfy some sort of NA in μ}

 asserts NA⟨X1⟩ ⊛ ⟨X2⟩ ⊛ … ⊛ ⟨Xn⟩ X1, X2, …, Xn

Skipping other challenges, we have

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

- Uniformly random permutations

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

- Uniformly random permutations

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

All valid axioms!

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

- Uniformly random permutations

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

All valid axioms!

P ∗ Q ⊢ P ⊛ Q

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

- Uniformly random permutations

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

All valid axioms!

P ∗ Q ⊢ P ⊛ Q

Examples of NA random variables:

- Deterministic variables

- Independent random variables

- Bernoulli random variables that sum to 1

- Uniformly random permutations

Closure of Negative Association:

- Subsets of NA variables are NA

- Union of independent NA sets is also NA

- Monotonically increasing map preserves NA

All valid axioms!

P ∗ Q ⊢ P ⊛ Q

Mono-map Axiom

Independence Negative Association→
on program logic

Independence Negative Association→
on program logic

A RSamp rule for NA?

Independence Negative Association→
on program logic

A RSamp rule for NA?

A frame rule for NA?

Independence Negative Association→
on program logic

A RSamp rule for NA?

A frame rule for NA?

Independence Negative Association→

⊢ {ϕ}c{ψ}
⊢ {ϕ ∗ η}c{ψ ∗ η}
c does not modifies FV(η) side conditions

on program logic

A RSamp rule for NA?

A frame rule for NA?

Independence Negative Association→

⊢ {ϕ}c{ψ}
⊢ {ϕ ∗ η}c{ψ ∗ η}
c does not modifies FV(η) side conditions

⊛ ⊛

on program logic

A RSamp rule for NA?

A frame rule for NA?

Independence Negative Association→

⊢ {ϕ}c{ψ}
⊢ {ϕ ∗ η}c{ψ ∗ η}
c does not modifies FV(η) side conditions

⊛ ⊛

c is a monotonically increasing map from dom(ϕ) to dom(ψ)

on program logic

A RSamp rule for NA?

A frame rule for NA?

Independence Negative Association→

⊢ {ϕ}c{ψ}
⊢ {ϕ ∗ η}c{ψ ∗ η}
c does not modifies FV(η) side conditions

⊛ ⊛

c is a monotonically increasing map from dom(ϕ) to dom(ψ)

on program logic

NA preserved under monotone maps

A RSamp rule for NA?

A frame rule for NA

Independence Negative Association→

⊢ {ϕ}c{ψ}
⊢ {ϕ ⊛ η}c{ψ ⊛ η}
c does not modifies FV(η) side conditions

on program logic

A frame rule for NA

Independence Negative Association→

⊢ {ϕ}c{ψ}
⊢ {ϕ ⊛ η}c{ψ ⊛ η}
c does not modifies FV(η) side conditions

on program logic

⟨y⟩

 obtained from a monotonically increasing map on ⟨y⟩ dom(ϕ)
⟨y⟩

NA-FRAME

c is a monotonically increasing map from dom(ϕ) to dom(ψ)
A frame rule for NA

Independence Negative Association→

⊢ {ϕ}c{ψ}
⊢ {ϕ ⊛ η}c{ψ ⊛ η}
c does not modifies FV(η) side conditions

on program logic

⟨y⟩

 obtained from a monotonically increasing map on ⟨y⟩ dom(ϕ)
⟨y⟩

APPLICATIONSAPPLICATIONS
to the motivating example

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 new_load = one-hot(3)

 loads = loads + new_load

 overflow = [n >= 10 for n in loads]

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 new_load = one-hot(3)

 loads = loads + new_load

 overflow = [n >= 10 for n in loads]

i = 0

while i < |tasks|:

 i = i + 1

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 new_load = one-hot(3)

 loads = loads + new_load

 overflow = [n >= 10 for n in loads]

i = 0

while i < |tasks|:

 i = i + 1

{⊛i∈{0,1,2}loads[i]}

In our informal proof

{⊛i∈{0,1,2}loads[i]}

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 new_load = one-hot(3)

 loads = loads + new_load

 overflow = [n >= 10 for n in loads]

i = 0

while i < |tasks|:

 i = i + 1

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 new_load = one-hot(3)

 loads = loads + new_load

 overflow = [n >= 10 for n in loads]

i = 0

while i < |tasks|:

 i = i + 1

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

 tasks = [A, …, Z]

 loads = [0, 0, 0]

 for task in tasks:

 new_load = one-hot(3)

 loads = loads + new_load

 overflow = [n >= 10 for n in loads]

i = 0

while i < |tasks|:

 i = i + 1

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

while i < |tasks|:

 i = i + 1

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

while i < |tasks|:

 i = i + 1

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

while i < |tasks|:

 i = i + 1

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

while i < |tasks|:

 i = i + 1

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

while i < |tasks|:

 i = i + 1

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

{(⊛i∈{0,1,2}loads[i] ∗ ⊛i∈{0,1,2} new_load[i]) ∧ …}

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

{(⊛i∈{0,1,2}loads[i] ∗ ⊛i∈{0,1,2} new_load[i]) ∧ …}

 P ∗ Q ⊢ P ⊛ Q

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

{(⊛i∈{0,1,2}loads[i] ∗ ⊛i∈{0,1,2} new_load[i]) ∧ …}

{((⊛i∈{0,1,2}loads[i]) ⊛ (⊛i∈{0,1,2}new_load[i])) ∧ …} P ∗ Q ⊢ P ⊛ Q

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

{(⊛i∈{0,1,2}loads[i] ∗ ⊛i∈{0,1,2} new_load[i]) ∧ …}

{((⊛i∈{0,1,2}loads[i]) ⊛ (⊛i∈{0,1,2}new_load[i])) ∧ …} P ∗ Q ⊢ P ⊛ Q

updates = loads + new_loads

loads = updates

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

{(⊛i∈{0,1,2}loads[i] ∗ ⊛i∈{0,1,2} new_load[i]) ∧ …}

{((⊛i∈{0,1,2}loads[i]) ⊛ (⊛i∈{0,1,2}new_load[i])) ∧ …} P ∗ Q ⊢ P ⊛ Q

Mono-map Axiom updates = loads + new_loads

loads = updates

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

{(⊛i∈{0,1,2}loads[i] ∗ ⊛i∈{0,1,2} new_load[i]) ∧ …}

{((⊛i∈{0,1,2}loads[i]) ⊛ (⊛i∈{0,1,2}new_load[i])) ∧ …} P ∗ Q ⊢ P ⊛ Q

Mono-map Axiom updates = loads + new_loads

loads = updates

{⊛i∈{0,1,2}updates[i] ∧ …}

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

{(⊛i∈{0,1,2}loads[i] ∗ ⊛i∈{0,1,2} new_load[i]) ∧ …}

{((⊛i∈{0,1,2}loads[i]) ⊛ (⊛i∈{0,1,2}new_load[i])) ∧ …} P ∗ Q ⊢ P ⊛ Q

Mono-map Axiom updates = loads + new_loads

loads = updates

{⊛i∈{0,1,2}updates[i] ∧ …}

 new_load = one-hot(3)

 loads = loads + new_load

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

{(⊛i∈{0,1,2}loads[i] ∗ OH3[new_loads]) ∧ …}

{(⊛i∈{0,1,2}loads[i] ∗ ⊛i∈{0,1,2} new_load[i]) ∧ …}

{((⊛i∈{0,1,2}loads[i]) ⊛ (⊛i∈{0,1,2}new_load[i])) ∧ …} P ∗ Q ⊢ P ⊛ Q

Mono-map Axiom updates = loads + new_loads

loads = updates

{⊛i∈{0,1,2}updates[i] ∧ …}

tasks = [A, …, Z]

loads = [0, 0, 0]

i = 0

while i < |tasks|:
 i = i + 1

 new_load = one-hot(3)
 loads = loads + new_load

overflow = [n >= 10 for n in loads]

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

Scoping back …

tasks = [A, …, Z]

loads = [0, 0, 0]

i = 0

while i < |tasks|:
 i = i + 1

 new_load = one-hot(3)
 loads = loads + new_load

overflow = [n >= 10 for n in loads]

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

Scoping back …

Mono-map Axiom

tasks = [A, …, Z]

loads = [0, 0, 0]

i = 0

while i < |tasks|:
 i = i + 1

 new_load = one-hot(3)
 loads = loads + new_load

overflow = [n >= 10 for n in loads]

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task]}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i ≥ | task |)}

{⊛i∈{0,1,2}loads[i] ∧ Detm[i] ∧ Detm[task] ∧ (i < | task | + 1)}

Scoping back …

Mono-map Axiom {⊛i∈{0,1,2}overflow[i]}

More contents in our paper

More contents in our paper
- M-BI logic: a sound and complete extension of BI that

supports ordered separating conjunctions

More contents in our paper
- M-BI logic: a sound and complete extension of BI that

supports ordered separating conjunctions
- Details of the (M)-BI model for negative association

More contents in our paper
- M-BI logic: a sound and complete extension of BI that

supports ordered separating conjunctions
- Details of the (M)-BI model for negative association
- Details of the NA-Frame rule

More contents in our paper
- M-BI logic: a sound and complete extension of BI that

supports ordered separating conjunctions
- Details of the (M)-BI model for negative association
- Details of the NA-Frame rule
- Applications to various probabilistic data structure

- Bloom filter
- Permutation Hashing [Ding and König 2011]
- Fully-dynamic dictionary [Bercea and Even 2019]
- Repeated balls-into-bins [Becchetti et al. 2019]

A SEPARATION LOGIC FOR
NEGATIVE DEPENDENCE

Jialu Bao at PLDG, Oct. 6, 2021
Joint work with Marco Gaboardi, Justin Hsu, Joseph Tassarotti

